ترغب بنشر مسار تعليمي؟ اضغط هنا

Electromechanical feedback control of nanoscale superflow

249   0   0.0 ( 0 )
 نشر من قبل Emil Varga
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Superfluid $^4$He is a promising material for optomechanical and electromechanical applications due to its low acoustic loss. Some of the more intriguing aspects of superfluidity -- the macroscopic coherence, topological nature of vorticity, and capability of supporting non-classical flows -- remain, however, poorly explored resources in opto- and electro-mechanical systems. Here, we present an electromechanical coupling to pure superflow inside a nanofluidic Helmholtz resonator with viscously clamped normal fluid. The system is capable of simultaneous measurement of displacement and velocity of the Helmholtz mechanical mode weakly driven by incoherent environmental noise. Additionally, we implement feedback capable of inducing self-oscillation of the non-classical acoustic mode, damping the motion below the ambient level, and tuning of the mode frequency.

قيم البحث

اقرأ أيضاً

We develop a robust and versatile platform to define nanostructures at oxide interfaces via patterned top gates. Using LaAlO$_3$/SrTiO$_3$ as a model system, we demonstrate controllable electrostatic confinement of electrons to nanoscale regions in t he conducting interface. The excellent gate response, ultra-low leakage currents, and long term stability of these gates allow us to perform a variety of studies in different device geometries from room temperature down to 50 mK. Using a split-gate device we demonstrate the formation of a narrow conducting channel whose width can be controllably reduced via the application of appropriate gate voltages. We also show that a single narrow gate can be used to induce locally a superconducting to insulating transition. Furthermore, in the superconducting regime we see indications of a gate-voltage controlled Josephson effect.
90 - Clive Emary , John Gough 2014
We discuss control of the quantum-transport properties of a mesoscopic device by connecting it in a coherent feedback loop with a quantum-mechanical controller. We work in a scattering approach and derive results for the combined scattering matrix of the device-controller system and determine the conditions under which the controller can exert ideal control on the output characteristics. As concrete example we consider the use of feedback to optimise the conductance of a chaotic quantum dot and investigate effects of controller dimension and decoherence. In both respects we find that the performance of the feedback geometry is well in excess of that offered by a simple series configuration.
Quantum control of individual spins in condensed matter systems is an emerging field with wide-ranging applications in spintronics, quantum computation, and sensitive magnetometry. Recent experiments have demonstrated the ability to address and manip ulate single electron spins through either optical or electrical techniques. However, it is a challenge to extend individual spin control to nanoscale multi-electron systems, as individual spins are often irresolvable with existing methods. Here we demonstrate that coherent individual spin control can be achieved with few-nm resolution for proximal electron spins by performing single-spin magnetic resonance imaging (MRI), which is realized via a scanning magnetic field gradient that is both strong enough to achieve nanometric spatial resolution and sufficiently stable for coherent spin manipulations. We apply this scanning field-gradient MRI technique to electronic spins in nitrogen-vacancy (NV) centers in diamond and achieve nanometric resolution in imaging, characterization, and manipulation of individual spins. For NV centers, our results in individual spin control demonstrate an improvement of nearly two orders of magnitude in spatial resolution compared to conventional optical diffraction-limited techniques. This scanning-field-gradient microscope enables a wide range of applications including materials characterization, spin entanglement, and nanoscale magnetometry.
We discuss methods for numerically solving the generalized Master equation GME which governs the time-evolution of the reduced density matrix of a mechanically movable mesoscopic device in a dissipative environment. As a specific example, we consider the quantum shuttle -- a generic quantum nanoelectromechanical system (NEMS). When expressed in the oscillator basis, the static limit of the GME becomes a large linear non-sparse matrix problem (characteristic size larger than 10^4 by 10^4) which however, as we show, can be treated using the Arnoldi iteration scheme. The numerical results are interpreted with the help of Wigner functions, and we compute the current and the noise in a few representative cases.
We study the properties of a nano-electromechanical system in the coherent regime, where the electronic and vibrational time scales are of the same order. Employing a master equation approach, we obtain the stationary reduced density matrix retaining the coherences between vibrational states. Depending on the system parameters, two regimes are identified, characterized by either ($i$) an {em effective} thermal state with a temperature {em lower} than that of the environment or ($ii$) strong coherent effects. A marked cooling of the vibrational degree of freedom is observed with a suppression of the vibron Fano factor down to sub-Poissonian values and a reduction of the position and momentum quadratures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا