ﻻ يوجد ملخص باللغة العربية
We present a novel approach to automatic image colorization by imitating the imagination process of human experts. Our imagination module is designed to generate color images that are context-correlated with black-and-white photos. Given a black-and-white image, our imagination module firstly extracts the context information, which is then used to synthesize colorful and diverse images using a conditional image synthesis network (e.g., semantic image synthesis model). We then design a colorization module to colorize the black-and-white images with the guidance of imagination for photorealistic colorization. Experimental results show that our work produces more colorful and diverse results than state-of-the-art image colorization methods. Our source codes will be publicly available.
Adaptive and flexible image editing is a desirable function of modern generative models. In this work, we present a generative model with auto-encoder architecture for per-region style manipulation. We apply a code consistency loss to enforce an expl
Colorization has attracted increasing interest in recent years. Classic reference-based methods usually rely on external color images for plausible results. A large image database or online search engine is inevitably required for retrieving such exe
We propose the first deep learning approach for exemplar-based local colorization. Given a reference color image, our convolutional neural network directly maps a grayscale image to an output colorized image. Rather than using hand-crafted rules as i
Lensless imaging has emerged as a potential solution towards realizing ultra-miniature cameras by eschewing the bulky lens in a traditional camera. Without a focusing lens, the lensless cameras rely on computational algorithms to recover the scenes f
Labeled crowd scene images are expensive and scarce. To significantly reduce the requirement of the labeled images, we propose ColorCount, a novel CNN-based approach by combining self-supervised transfer colorization learning and global prior classif