ترغب بنشر مسار تعليمي؟ اضغط هنا

The luminosity function of TeV-emitting BL Lacs: observations of an HBL sample with VERITAS

87   0   0.0 ( 0 )
 نشر من قبل Manel Errando
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

High-frequency-peaked BL Lacs (HBLs) dominate the extragalactic TeV sky, with more than 50 objects detected by the current generation of TeV observatories. Still, the properties of TeV-emitting HBLs as a population are poorly understood due to biases introduced by the observing strategies of Cherenkov Telescopes, limiting our ability to estimate the potential contribution of TeV blazars to the diffuse neutrino, gamma-ray, and cosmic-ray background as well as their role in the late-stage evolution of active galactic nuclei. The VERITAS telescope array has designed a program to quantify and minimize observational biases by selecting a sample of 36 HBLs and measuring their TeV flux at times that are not weighted towards high-flux states. Such a survey could form the basis for a measurement of the luminosity function of TeV-emitting HBLs.

قيم البحث

اقرأ أيضاً

The very high energy (VHE) gamma ray spectral index of high energy peaked blazars correlates strongly with its corresponding redshift whereas no such correlation is observed in the X-ray or the GeV bands. We attribute this correlation to a result of photon-photon absorption of TeV photons with the extragalactic background light (EBL) and utilizing this, we compute the allowed flux range for the EBL, which is independent of previous estimates. The observed VHE spectrum of the sources in our sample can be well approximated by a power-law, and if the de-absorbed spectrum is also assumed to be a power law, then we show that the spectral shape of EBL will be $epsilon n(epsilon) sim k log(frac{epsilon}{epsilon_p}) $. We estimate the range of values for the parameters defining the EBL spectrum, $k$ and $epsilon_p$, such that the correlation of the intrinsic VHE spectrum with redshift is nullified. The estimated EBL depends only on the observed correlation and the assumption of a power law source spectrum. Specifically, it does not depend on the spectral modeling or radiative mechanism of the sources, nor does it depend on any theoretical shape of the EBL spectrum obtained through cosmological calculations. The estimated EBL spectrum is consistent with the upper and lower limits imposed by different observations. Moreover, it also agrees closely with the theoretical estimates obtained through cosmological evolution models.
The VERITAS collaboration reports the detection of very-high-energy (VHE) gamma-ray emission from the high-frequency-peaked BL Lac object 1ES 1218+304 located at a redshift of z=0.182. A gamma-ray signal was detected with a statistical significance o f 10.4 standard deviations (10.4 sigma) for the observations taken during the first three months of 2007, confirming the discovery of this object made by the MAGIC collaboration. The photon spectrum between ~160 GeV and ~1.8 TeV is well described by a power law with an index of Gamma = 3.08 +/- 0.34_stat +/- 0.2_sys. The integral flux is Phi(E > 200 GeV) = (12.2 +/- 2.6) X 10^-12 cm^-2 s^-1, which corresponds to ~6% of that of the Crab Nebula. The light curve does not show any evidence for VHE flux variability. Using lower limits on the density of the extragalactic background light in the near to mid-infrared we are able to limit the range of intrinsic energy spectra for 1ES 1218+304. We show that the intrinsic photon spectrum has an index that is harder than Gamma = 2.32 +/- 0.37_stat. When including constraints from the spectra of 1ES 1101-232 and 1ES 0229+200, the spectrum of 1ES 1218+304 is likely to be harder than Gamma = 1.86 +/- 0.37_stat.
168 - M. Orr 2013
Here we present highlights from VERITAS observations of high-frequency-peaked BL Lac objects (HBLs). We discuss the key science motivations for observing these sources -- including performing multiwavelength campaigns critical to understanding the em ission mechanisms at work in HBLs, constraining the intensity and spectra shape of the extragalactic background light, and placing limits on the strength of the intergalactic magnetic field.
Hard-TeV BL Lacs are a new type of blazars characterized by a hard intrinsic TeV spectrum, locating the peak of their gamma-ray emission in the spectral energy distribution (SED) above 2-10 TeV. Such high energies are problematic for the Compton emis sion, using a standard one-zone leptonic model. We study six examples of this new type of BL Lacs in the hard X-ray band with the NuSTAR satellite. Together with simultaneous observations with the SWIFT satellite, we fully constrain the peak of the synchrotron emission in their SED, and test the leptonic synchrotron self-Compton (SSC) model. We confirm the extreme nature of 5 objects also in the synchrotron emission. We do not find evidence of additional emission components in the hard X-ray band. We find that a one-zone SSC model can in principle reproduce the extreme properties of both peaks in the SED, from X-ray up to TeV energies, but at the cost of i) extreme electron energies with very low radiative efficiency, ii) conditions heavily out of equipartition (by 3 to 5 orders of magnitude), and iii) not accounting for the simultaneous UV data, which then should belong to a different emission component, possibly the same as the far-IR (WISE) data. We find evidence of this separation of the UV and X-ray emission in at least two objects. In any case, the TeV electrons must not see the UV or lower-energy photons, even if coming from different zones/populations, or the increased radiative cooling would steepen the VHE spectrum.
95 - Andrew W. Smith 2013
Since the commissioning of the array in Spring 2007, the VERITAS array (sensitive in the 0.1-50 TeV energy range) has acquired over 300 hours of observations investigating the TeV emission from X-ray binary star systems, in particular focusing on the known TeV binary targets LS I +61 303 and HESS J0632+057. Both TeV binaries have been monitored by VERITAS for several years and the resulting dataset is continuing to yield important results in the characterization of these poorly understood systems. We present these results, as well as the contemporaneous observations of these sources taken with Fermi-LAT and Swift-XRT. In the case of LS I +61 303, simultaneous observations taken with VERITAS and Fermi-LAT reveal a break in emission in the 10-200 GeV range. For HESS J0632 057, the extended VERITAS observations have allowed for the first identification of a binary system through TeV gamma-ray observations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا