ﻻ يوجد ملخص باللغة العربية
While the axion was originally introduced to wash out CP violation from strong interactions, new sources of CP violation beyond QCD might manifest themselves via a tiny scalar axion-nucleon component. The latter can be experimentally probed in axion-mediated force experiments, as suggested long ago by J.E. Moody and F. Wilczek. In the present note, I review the physical origin of CP-violating axion couplings and point out the special role of the QCD axion as a low-energy portal to high-energy sources of CP violation.
Current upper bounds of the neutron electric dipole moment constrain the physically observable quantum chromodynamic (QCD) vacuum angle $|bartheta| lesssim 10^{-11}$. Since QCD explains vast experimental data from the 100 MeV scale to the TeV scale,
We investigate the sensitivity of the next generation of flavor-based low-energy experiments to probe the supersymmetric parameter space in the context of the phenomenological MSSM (pMSSM), and examine the complementarity with direct searches for Sup
We introduce a scenario for CP-violating (CPV) dark photon interactions in the context of non-abelian kinetic mixing. Assuming an effective field theory that extends the Standard Model (SM) field content with an additional $U(1)$ gauge boson ($X$) an
We study an extension of the Standard Model (SM) in which two copies of the SM scalar $SU(2)$ doublet which do not acquire a Vacuum Expectation Value (VEV), and hence are textit{inert}, are added to the scalar sector. We allow for CP-violation in the
We solve the equations of motion for a CP violating phase between the two Higgs doublets at the bubble wall of the MSSM electroweak phase transition. Contrary to earlier suggestions, we do not find indications of spontaneous ``transitional CP violati