ترغب بنشر مسار تعليمي؟ اضغط هنا

The PICASSO map-making code: application to a simulation of the QUIJOTE northern sky survey

56   0   0.0 ( 0 )
 نشر من قبل Federica Guidi
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Map-making is an important step for the data analysis of Cosmic Microwave Background (CMB) experiments. It consists of converting the data, which are typically a long, complex and noisy collection of measurements, into a map, which is an image of the observed sky. We present in this paper a new map-making code named PICASSO (Polarization and Intensity CArtographer for Scanned Sky Observations), which was implemented to construct intensity and polarization maps from the Multi Frequency Instrument (MFI) of the QUIJOTE (Q-U-I Joint TEnerife) CMB polarization experiment. PICASSO is based on the destriping algorithm, and is suited to address specific issues of ground-based microwave observations, with a technique that allows the fit of a template function in the time domain, during the map-making step. This paper describes the PICASSO code, validating it with simulations and assessing its performance. For this purpose, we produced realistic simulations of the QUIJOTE-MFI survey of the northern sky (approximately $sim 20,000,$deg$^2$), and analysed the reconstructed maps with PICASSO, using real and harmonic space statistics. We show that, for this sky area, PICASSO is able to reconstruct, with high fidelity, the injected signal, recovering all the scales with $ell>10$ in TT, EE and BB. The signal error is better than 0.001% at $20<ell<200$. Finally, we validated some of the methods that will be applied to the real wide-survey data, like the detection of the CMB anisotropies via cross-correlation analyses. Despite that the implementation of PICASSO is specific for QUIJOTE-MFI data, it could be adapted to other experiments.

قيم البحث

اقرأ أيضاً

We propose an extension of the LSST survey to cover the northern sky to DEC < +30 (accessible at airmass <1.8). This survey will increase the LSST sky coverage by ~9,600 square degrees from 18,900 to 28,500 square degrees (a 50% increase) but use onl y 0.6-2.5% of the time depending on the synergies with other surveys. This increased area addresses a wide range of science cases that enhance all of the primary LSST science goals by significant amounts. The science enabled includes: increasing the area of the sky accessible for follow-up of multi-messenger transients including gravitational waves, mapping the milky way halo and halo dwarfs including discovery of RR Lyrae stars in the outer galactic halo, discovery of z>7 quasars in combination Euclid, enabling a second generation DESI and other spectroscopic surveys, and enhancing all areas of science by improving synergies with Euclid, WFIRST, and unique northern survey facilities. This white paper is the result of the Tri-Agency Working Group (TAG) appointed to develop synergies between missions and presents a unified plan for northern coverage. The range of time estimates reflects synergies with other surveys. If the modified DESC WFD survey, the ecliptic plane mini survey, and the north galactic spur mini survey are executed this plan would only need 0.6% of the LSST time, however if none of these are included the overall request is 2.5% of the 10 year survey life. In other words, the majority of these observations are already suggested as part of these other surveys and the intent of this white paper is to propose a unified baseline plan to carry out a broad range of objectives to facilitate a combination of multiple science objectives. A companion white paper gives Euclid specific science goals, and we support the white papers for southern extensions of the LSST survey.
The C-Band All-Sky Survey (C-BASS) is an all-sky full-polarization survey at a frequency of 5 GHz, designed to provide data complementary to the all-sky surveys of WMAP and Planck and future CMB B-mode polarization imaging surveys. We describe the de sign and performance of the digital backend used for the northern part of the survey. In particular we describe the features that efficiently implement the demodulation and filtering required to suppress contaminating signals in the time-ordered data, and the capability for real-time correction of detector non-linearity and receiver balance.
We present a new method for interferometric imaging that is ideal for the large fields of view and compact arrays common in 21 cm cosmology. We first demonstrate the method with simulations for two very different low frequency interferometers, the Mu rchison Widefield Array (MWA) and the MIT Epoch of Reionization (MITEoR) Experiment. We then apply the method to the MITEoR data set collected in July 2013 to obtain the first northern sky map from 128 MHz to 175 MHz at about 2 degree resolution, and find an overall spectral index of -2.73+/-0.11. The success of this imaging method bodes well for upcoming compact redundant low-frequency arrays such as HERA. Both the MITEoR interferometric data and the 150 MHz sky map are publicly available at http://space.mit.edu/home/tegmark/omniscope.html.
41 - Eric Hivon 2017
We describe the steps necessary to create three-dimensional (3D) movies of Northern Lights or Aurorae Borealis out of real-time images taken with two distant high-resolution fish-eye cameras. Astrometric reconstruction of the visible stars is used to model the optical mapping of each camera and correct for it in order to properly align the two sets of images. Examples of the resulting movies can be seen at http://www.iap.fr/aurora3d.
The C-Band All-Sky Survey (C-BASS) is a project to map the full sky in total intensity and linear polarization at 5 GHz. The northern component of the survey uses a broadband single-frequency analogue receiver fitted to a 6.1-m telescope at the Owens Valley Radio Observatory in California, USA. The receiver architecture combines a continuous-comparison radiometer and a correlation polarimeter in a single receiver for stable simultaneous measurement of both total intensity and linear polarization, using custom-designed analogue receiver components. The continuous-comparison radiometer measures the temperature difference between the sky and temperature-stabilized cold electrical reference loads. A cryogenic front-end is used to minimize receiver noise, with a system temperature of $approx 30,$K in both linear polarization and total intensity. Custom cryogenic notch filters are used to counteract man-made radio frequency interference. The radiometer $1/f$ noise is dominated by atmospheric fluctuations, while the polarimeter achieves a $1/f$ noise knee frequency of 10 mHz, similar to the telescope azimuthal scan frequency.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا