ﻻ يوجد ملخص باللغة العربية
We generalize the convex duality symmetry in Gibbs statistical ensemble formulation, between Massieus free entropy $Phi_{V,N} (beta)$ and the Gibbs entropy $varphi_{V,N}(u)$ as a function of mean internal energy $u$. The duality tells us that Gibbs thermodynamic entropy is to the law of large numbers (LLN) for arithmetic sample means what Shannons information entropy is to the LLN for empirical counting frequencies. Following the same logic, we identify $u$ as the conjugate variable to counting frequency, a Hamilton-Jacobi equation for Shannon entropy as an equation of state, and suggest an eigenvalue problem for modeling statistical frequencies of correlated data.
The Gibbs entropy of a macroscopic classical system is a function of a probability distribution over phase space, i.e., of an ensemble. In contrast, the Boltzmann entropy is a function on phase space, and is thus defined for an individual system. Our
This paper introduces the basic concepts of information theory. Based on these concepts, we regard the states in the state space and the types of ideal gases as the symbols in a symbol set to calculate the mixing entropy of ideal gas involved in Gibb
We show that the exact beta-function beta(g) in the continuous 2D gPhi^{4} model possesses the Kramers-Wannier duality symmetry. The duality symmetry transformation tilde{g}=d(g) such that beta(d(g))=d(g)beta(g) is constructed and the approximate val
We discuss the implementation of two different truncated Generalized Gibbs Ensembles (GGE) describing the stationary state after a mass quench process in the Ising Field Theory. One truncated GGE is based on the semi-local charges of the model, the other on regulariz
We derive exact analytic results for several four-point correlation functions for statistical models exhibiting phase separation in two-dimensions. Our theoretical results are then specialized to the Ising model on the two-dimensional strip and found