ﻻ يوجد ملخص باللغة العربية
We make the most precise determination to date of the number density of extragalactic 21-cm radio sources as a function of their spectral line widths - the HI velocity width function (HIWF) - based on 22832 sources from the final 7000 deg$^2$ data release of the Arecibo Legacy Fast ALFA (ALFALFA) survey. The number density of sources as a function of their neutral hydrogen masses - the HI mass function (HIMF) - has previously been reported to have a significantly different low-mass slope and knee mass in the two sky regions surveyed during ALFALFA. In contrast with this, we find that the shape of the HIWF in the same two sky regions is remarkably similar, consistent with being identical within the confidence intervals implied by the data (but the overall normalisation differs). The spatial uniformity of the HIWF implies that it is likely a stable tracer of the mass function of dark matter haloes, in spite of the environmental processes to which the measured variation in the HIMF are attributed, at least for galaxies containing enough neutral hydrogen to be detected. This insensitivity of the HIWF to galaxy formation and evolution can be exploited to turn it into a powerful constraint on cosmological models as future surveys yield increasingly precise measurements. We also report on the possible influence of a previously overlooked systematic error affecting the HIWF, which may plausibly see its low-velocity slope steepen by $sim$40 per cent in analyses of future, deeper surveys.
Accurately predicting the shape of the HI velocity function of galaxies is regarded widely as a fundamental test of any viable dark matter model. Straightforward analyses of cosmological $N$-body simulations imply that the $Lambda$CDM model predicts
We present the catalog of ~31500 extragalactic HI line sources detected by the completed ALFALFA survey out to z < 0.06 including both high signal-to-noise ratio (> 6.5) detections and ones of lower quality which coincide in both position and recessi
Ultra-diffuse galaxies have generated significant interest due to their large optical extents and low optical surface brightnesses, which challenge galaxy formation models. Here we present resolved synthesis observations of 12 HI-bearing ultra-diffus
HI in galaxies traces the fuel for future star formation and reveals the effects of feedback on neutral gas. Using a statistically uniform, HI-selected sample of 565 galaxies from the ALFALFA H-alpha survey, we explore HI properties as a function of
We present the HI content of galaxies in nearby groups and clusters as measured by the 70% complete Arecibo Legacy Fast-ALFA (ALFALFA) survey, including constraints from ALFALFA detection limits. Our sample includes 22 systems at distances between 70