ترغب بنشر مسار تعليمي؟ اضغط هنا

Sub-atomic constraints on the Kerr geometry of GW150914

113   0   0.0 ( 0 )
 نشر من قبل Julian Westerweck
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We obtain stringent constraints on near-horizon deviations of a black hole from the Kerr geometry by performing a long-duration Bayesian analysis of the gravitational-wave data immediately following GW150914. GW150914 was caused by a binary system that merged to form a final compact object. We parameterize deviations of this object from a Kerr black hole by modifying its boundary conditions from full absorption to full reflection, thereby modeling it as a horizonless ultracompact object. Such modifications result in the emission of long-lived monochromatic quasinormal modes after the merger. These modes would extract energy on the order of a few solar masses from the final object, making them observable by LIGO. By putting bounds on the existence of these modes, we show that the Kerr geometry is not modified down to distances as small as $4 times 10^{-16}$ meters away from the horizon. Our results indicate that the post-merger object formed by GW150914 is a black hole that is well described by the Kerr geometry.



قيم البحث

اقرأ أيضاً

Bound geodesic orbits around a Kerr black hole can be parametrized by three constants of the motion: the (specific) orbital energy, angular momentum and Carter constant. Generically, each orbit also has associated with it three frequencies, related t o the radial, longitudinal and (mean) azimuthal motions. Here we note the curious fact that these two ways of characterizing bound geodesics are not in a one-to-one correspondence. While the former uniquely specifies an orbit up to initial conditions, the latter does not: there is a (strong-field) region of the parameter space in which pairs of physically distinct orbits can have the same three frequencies. In each such isofrequency pair the two orbits exhibit the same rate of periastron precession and the same rate of Lense-Thirring precession of the orbital plane, and (in a certain sense) they remain synchronized in phase.
We study force-free magnetospheres in the Blandford-Znajek process from rapidly rotating black holes by adopting the near-horizon geometry of near-extreme Kerr black holes (near-NHEK). It is shown that the Znajek regularity condition on the horizon c an be directly derived from the resulting stream equation. In terms of the condition, we split the full stream equation into two separate equations. Approximate solutions around the rotation axis are derived. They are found to be consistent with previous solutions obtained in the asymptotic region. The solutions indicate energy and angular-momentum extraction from the hole.
On 14th September 2015, a transient gravitational wave (GW150914) was detected by the two LIGO detectors at Hanford and Livingston from the coalescence of a binary black hole system located at a distance of about 400 Mpc. We point out that GW150914 e xperienced a Shapiro delay due to the gravitational potential of the mass distribution along the line of sight of about 1800 days. Also, the near-simultaneous arrival of gravitons over a frequency range of about 100 Hz within a 0.2 second window allows us to constrain any violations of Shapiro delay and Einsteins equivalence principle between the gravitons at different frequencies. From the calculated Shapiro delay and the observed duration of the signal, frequency-dependent violations of the equivalence principle for gravitons are constrained to an accuracy of $mathcal{O}(10^{-9})$
Parameter estimates of GW150914 were obtained using Bayesian inference, based on three semi-analytic waveform models for binary black hole coalescences. These waveform models differ from each other in their treatment of black hole spins, and all thre e models make some simplifying assumptions, notably to neglect sub-dominant waveform harmonic modes and orbital eccentricity. Furthermore, while the models are calibrated to agree with waveforms obtained by full numerical solutions of Einsteins equations, any such calibration is accurate only to some non-zero tolerance and is limited by the accuracy of the underlying phenomenology, availability, quality, and parameter-space coverage of numerical simulations. This paper complements the original analyses of GW150914 with an investigation of the effects of possible systematic errors in the waveform models on estimates of its source parameters. To test for systematic errors we repeat the original Bayesian analyses on mock signals from numerical simulations of a series of binary configurations with parameters similar to those found for GW150914. Overall, we find no evidence for a systematic bias relative to the statistical error of the original parameter recovery of GW150914 due to modeling approximations or modeling inaccuracies. However, parameter biases are found to occur for some configurations disfavored by the data of GW150914: for binaries inclined edge-on to the detector over a small range of choices of polarization angles, and also for eccentricities greater than $sim$0.05. For signals with higher signal-to-noise ratio than GW150914, or in other regions of the binary parameter space (lower masses, larger mass ratios, or higher spins), we expect that systematic errors in current waveform models may impact gravitational-wave measurements, making more accurate models desirable for future observations.
On September 14, 2015, the Laser Interferometer Gravitational-wave Observatory (LIGO) detected a gravitational-wave transient (GW150914); we characterize the properties of the source and its parameters. The data around the time of the event were anal yzed coherently across the LIGO network using a suite of accurate waveform models that describe gravitational waves from a compact binary system in general relativity. GW150914 was produced by a nearly equal mass binary black hole of $36^{+5}_{-4} M_odot$ and $29^{+4}_{-4} M_odot$; for each parameter we report the median value and the range of the 90% credible interval. The dimensionless spin magnitude of the more massive black hole is bound to be $<0.7$ (at 90% probability). The luminosity distance to the source is $410^{+160}_{-180}$ Mpc, corresponding to a redshift $0.09^{+0.03}_{-0.04}$ assuming standard cosmology. The source location is constrained to an annulus section of $610$ deg$^2$, primarily in the southern hemisphere. The binary merges into a black hole of $62^{+4}_{-4} M_odot$ and spin $0.67^{+0.05}_{-0.07}$. This black hole is significantly more massive than any other inferred from electromagnetic observations in the stellar-mass regime.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا