ﻻ يوجد ملخص باللغة العربية
We obtain stringent constraints on near-horizon deviations of a black hole from the Kerr geometry by performing a long-duration Bayesian analysis of the gravitational-wave data immediately following GW150914. GW150914 was caused by a binary system that merged to form a final compact object. We parameterize deviations of this object from a Kerr black hole by modifying its boundary conditions from full absorption to full reflection, thereby modeling it as a horizonless ultracompact object. Such modifications result in the emission of long-lived monochromatic quasinormal modes after the merger. These modes would extract energy on the order of a few solar masses from the final object, making them observable by LIGO. By putting bounds on the existence of these modes, we show that the Kerr geometry is not modified down to distances as small as $4 times 10^{-16}$ meters away from the horizon. Our results indicate that the post-merger object formed by GW150914 is a black hole that is well described by the Kerr geometry.
Bound geodesic orbits around a Kerr black hole can be parametrized by three constants of the motion: the (specific) orbital energy, angular momentum and Carter constant. Generically, each orbit also has associated with it three frequencies, related t
We study force-free magnetospheres in the Blandford-Znajek process from rapidly rotating black holes by adopting the near-horizon geometry of near-extreme Kerr black holes (near-NHEK). It is shown that the Znajek regularity condition on the horizon c
On 14th September 2015, a transient gravitational wave (GW150914) was detected by the two LIGO detectors at Hanford and Livingston from the coalescence of a binary black hole system located at a distance of about 400 Mpc. We point out that GW150914 e
Parameter estimates of GW150914 were obtained using Bayesian inference, based on three semi-analytic waveform models for binary black hole coalescences. These waveform models differ from each other in their treatment of black hole spins, and all thre
On September 14, 2015, the Laser Interferometer Gravitational-wave Observatory (LIGO) detected a gravitational-wave transient (GW150914); we characterize the properties of the source and its parameters. The data around the time of the event were anal