ترغب بنشر مسار تعليمي؟ اضغط هنا

Large N Optimization for multi-matrix systems

46   0   0.0 ( 0 )
 نشر من قبل Robert de Mello Koch
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this work we revisit the problem of solving multi-matrix systems through numerical large $N$ methods. The framework is a collective, loop space representation which provides a constrained optimization problem, addressed through master-field minimization. This scheme applies both to multi-matrix integrals ($c=0$ systems) and multi-matrix quantum mechanics ($c=1$). The complete fluctuation spectrum is also computable in the above scheme, and is of immediate physical relevance in the later case. The complexity (and the growth of degrees of freedom) at large $N$ have stymied earlier attempts and in the present work we present significant improvements in this regard. The (constrained) minimization and spectrum calculations are easily achieved with close to $10^4$ variables, giving solution to Migdal-Makeenko, and collective field equations. Considering the large number of dynamical (loop) variables and the extreme nonlinearity of the problem, high precision is obtained when confronted with solvable cases. Through numerical results presented, we prove that our scheme solves, by numerical loop space methods, the general two matrix model problem.

قيم البحث

اقرأ أيضاً

Large $N$ matrix models play an important role in modern theoretical physics, ranging from quantum chromodynamics to string theory and holography. However, they remain a difficult technical challenge because in most cases it is not known how to perfo rm the sum over planar graphs, which dominate the models at large $N$. In this thesis, we study large $D$ matrix models, which provide a framework to build new limits for matrix models in which the sum over planar graphs simplifies when $D$ is large. The basic degrees of freedom are real matrices of size $Ntimes N$ with $r$ additional indices of range $D$. They can be interpreted as a real tensor of rank $R=r+2$ with indices of different ranges, making a compelling connection with tensor models. We define a new large $D$ limit for the sum over Feynman graphs of fixed genus in matrix models, based on an enhanced large $D$ scaling of the coupling constants. Then, we show that the resulting large $D$ expansion is well-defined and organized according to a half-integer called the index. When $N=D$, the result provides a new large $N$ limit for general $text{O}(N)^R$ invariant tensor models. In the large $D$ limit, the sum over planar graphs of large $N$ matrix models simplifies to a non-trivial sum over generalized melonic graphs. This class of graphs extends the one obtained in tensor models with standard scaling and allows for a wider class of interactions, including all the maximally single-trace terms. The general classification of generalized melonic graphs remains an open problem. However, in the case of the complete interaction of order $R+1$ for $R$ a prime number, we identify them in detail and demonstrate that they exhibit the same important features as the SYK model with $q=(R+1)$-fold random interactions, including the emergent conformal symmetry in the infrared regime and maximal chaos.
We investigate the existence and properties of a double asymptotic expansion in $1/N^{2}$ and $1/sqrt{D}$ in $mathrm{U}(N)timesmathrm{O}(D)$ invariant Hermitian multi-matrix models, where the $Ntimes N$ matrices transform in the vector representation of $mathrm{O}(D)$. The crucial point is to prove the existence of an upper bound $eta(h)$ on the maximum power $D^{1+eta(h)}$ of $D$ that can appear for the contribution at a given order $N^{2-2h}$ in the large $N$ expansion. We conjecture that $eta(h)=h$ in a large class of models. In the case of traceless Hermitian matrices with the quartic tetrahedral interaction, we are able to prove that $eta(h)leq 2h$; the sharper bound $eta(h)=h$ is proven for a complex bipartite version of the model, with no need to impose a tracelessness condition. We also prove that $eta(h)=h$ for the Hermitian model with the sextic wheel interaction, again with no need to impose a tracelessness condition.
We construct a class of matrix models, where supersymmetry (SUSY) is spontaneously broken at the matrix size $N$ infinite. The models are obtained by dimensional reduction of matrix-valued SUSY quantum mechanics. The potential of the models is slowly varying, and the large-$N$ limit is taken with the slowly varying limit. First, we explain our formalism, introducing an external field to detect spontaneous SUSY breaking, analogously to ordinary (bosonic) symmetry breaking. It is observed that SUSY is possibly broken even in systems in less than one-dimension, for example, discretized quantum mechanics with a finite number of discretized time steps. Then, we consider spontaneous SUSY breaking in the SUSY matrix models with slowly varying potential, where the external field is turned off after the large-$N$ and slowly varying limit, analogously to the thermodynamic limit in statistical systems. On the other hand, without taking the slowly varying limit, in the SUSY matrix model with a double-well potential whose SUSY is broken due to instantons for finite $N$, a number of supersymmetric behavior is explicitly seen at large $N$. It convinces us that the instanton effect disappears and the SUSY gets restored in the large-$N$ limit.
We consider an effective kinetic description for quantum many-body systems, which is not based on a weak-coupling or diluteness expansion. Instead, it employs an expansion in the number of field components N of the underlying scalar quantum field the ory. Extending previous studies, we demonstrate that the large-N kinetic theory at next-to-leading order is able to describe important aspects of highly occupied systems, which are beyond standard perturbative kinetic approaches. We analyze the underlying quasiparticle dynamics by computing the effective scattering matrix elements analytically and solve numerically the large-N kinetic equation for a highly occupied system far from equilibrium. This allows us to compute the universal scaling form of the distribution function at an infrared nonthermal fixed point within a kinetic description and we compare to existing lattice field theory simulation results.
We motivate inflationary scenarios with many scalar fields, and give a complete formulation of adiabatic and entropy perturbations. We find that if the potential is very flat, or if the theory has a SO(N) symmetry, the calculation of the fluctuation spectrum can be carried out in terms of merely two variables without any further assumption. We do not have to assume slow roll or SO(N) invariance for the background fields. We give some examples to show that, even if the slow roll assumption holds, the spectrum of fluctuations can be quite different from the case when there is a single inflaton.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا