ﻻ يوجد ملخص باللغة العربية
Stable sources of entangled photons are important requirements for quantum communications. In recent years, cascaded downconversion has been demonstrated as an effective method of directly producing three-photon entanglement. However, to produce polarization entanglement these sources have until now relied on intricate active phase stabilization schemes, thus limiting their robustness and usability. In this work, we present a completely phase-stable source of three-photon entanglement in the polarization degree of freedom. With this source, which is based on a cascade of two pair sources based on Sagnac configurations, we produce states with over 96% fidelity with an ideal GHZ state. Moreover, we demonstrate the stability of the source over several days without any ongoing optimization. We expect this source to be a useful tool for applications requiring multiphoton entanglement, such as quantum secret sharing and producing heralded entangled photon pairs.
Heralded single photon sources are often implemented using spontaneous parametric downconversion, but their quality can be restricted by optical loss, double pair emission and detector dark counts. Here, we show that the performance of such sources c
High-dimensional entanglement promises to greatly enhance the performance of quantum communication and enable quantum advantages unreachable by qubit entanglement. One of the great challenges, however, is the reliable production, distribution and loc
We demonstrate a compact, robust, and highly efficient source of polarization-entangled photons, based on linear bi-directional down-conversion in a novel folded sandwich configuration. Bi-directionally pumping a single periodically poled KTiOPO$_4$
We report a novel and simple approach for generating near-perfect quality polarization entanglement in a fully guided-wave fashion. Both deterministic pair separation into two adjacent telecommunication channels and the paired photons temporal walk-o
Owing to their unsurpassed photostability, defects in solids may be ideal candidates for single photon sources. Here we report on generation of single photons by optical excitation of a yet unexplored defect in diamond, the nickel-nitrogen complex (N