ترغب بنشر مسار تعليمي؟ اضغط هنا

An ObsPy library for event detection and seismic attribute calculation: preparing waveforms for automated analysis

62   0   0.0 ( 0 )
 نشر من قبل Ross Turner
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have implemented an extension for the observational seismology obspy software package to provide a streamlined tool tailored to the processing of seismic signals from non-earthquake sources, in particular those from deforming systems such as glaciers and landslides. This seismic attributes library provides functionality to: (1) download and/or pre-process seismic waveform data; (2) detect and catalogue seismic events using multi-component signals from one or more seismometers; and (3) calculate characteristics (attributes/features) of the identified events. The workflow is controlled by three main functions that have been tested for the breadth of data types expected from permanent and campaign-deployed seismic instrumentation. A selected STA/LTA-type (short-term average/long-term average), or other, event detection algorithm can be applied to the waveforms and user-defined functions implemented to calculate any required characteristics of the detected events. The code is written in Python 2/3 and is available on GitHub together with detailed documentation and worked examples.



قيم البحث

اقرأ أيضاً

Small magnitude earthquakes are the most abundant but the most difficult to locate robustly and well due to their low amplitudes and high frequencies usually obscured by heterogeneous noise sources. They highlight crucial information about the stress state and the spatio-temporal behavior of fault systems during the earthquake cycle, therefore, its full characterization is then crucial for improving earthquake hazard assessment. Modern DL algorithms along with the increasing computational power are exploiting the continuously growing seismological databases, allowing scientists to improve the completeness for earthquake catalogs, systematically detecting smaller magnitude earthquakes and reducing the errors introduced mainly by human intervention. In this work, we introduce OKSP, a novel automatic earthquake detection pipeline for seismic monitoring in Costa Rica. Using Kabre supercomputer from the Costa Rica High Technology Center, we applied OKSP to the day before and the first 5 days following the Puerto Armuelles, M6.5, earthquake that occurred on 26 June, 2019, along the Costa Rica-Panama border and found 1100 more earthquakes previously unidentified by the Volcanological and Seismological Observatory of Costa Rica. From these events, a total of 23 earthquakes with magnitudes below 1.0 occurred a day to hours prior to the mainshock, shedding light about the rupture initiation and earthquake interaction leading to the occurrence of this productive seismic sequence. Our observations show that for the study period, the model was 100% exhaustive and 82% precise, resulting in an F1 score of 0.90. This effort represents the very first attempt for automatically detecting earthquakes in Costa Rica using deep learning methods and demonstrates that, in the near future, earthquake monitoring routines will be carried out entirely by AI algorithms.
Seismic full-waveform inversion (FWI), which uses iterative methods to estimate high-resolution subsurface models from seismograms, is a powerful imaging technique in exploration geophysics. In recent years, the computational cost of FWI has grown ex ponentially due to the increasing size and resolution of seismic data. Moreover, it is a non-convex problem and can encounter local minima due to the limited accuracy of the initial velocity models or the absence of low frequencies in the measurements. To overcome these computational issues, we develop a multiscale data-driven FWI method based on fully convolutional networks (FCN). In preparing the training data, we first develop a real-time style transform method to create a large set of synthetic subsurface velocity models from natural images. We then develop two convolutional neural networks with encoder-decoder structure to reconstruct the low- and high-frequency components of the subsurface velocity models, separately. To validate the performance of our data-driven inversion method and the effectiveness of the synthesized training set, we compare it with conventional physics-based waveform inversion approaches using both synthetic and field data. These numerical results demonstrate that, once our model is fully trained, it can significantly reduce the computation time, and yield more accurate subsurface velocity models in comparison with conventional FWI.
Seismic attributes calculated by conventional methods are susceptible to noise. Conventional filtering reduces the noise in the cost of losing the spectral bandwidth. The challenge of having a high-resolution and robust signal processing tool motivat ed us to propose a sparse time-frequency decomposition while is stabilized for random noise. The procedure initiates by using Sparsity-based adaptive S-transform to regularize abrupt variations in frequency content of the nonstationary signals. Then, considering the fact that a higher amplitude of a frequency component results in a higher signal to noise ratio, an adaptive filter is applied to the time-frequency spectrum which is sparcified previously. The proposed zero adaptive filter enhances the high amplitude frequency components while suppresses the lower ones. The performance of the proposed method is compared to the sparse S-transform and the robust window Hilbert transform in estimation of instantaneous attributes by applying on synthetic and real data sets. Seismic attributes estimated by the proposed method is superior to the conventional ones in terms of its robustness and high resolution image. The proposed approach has a vast application in interpretation and identification of geological structures.
The boundary sheath of a low temperature plasma comprises typically only a small fraction of its volume but is responsible for many aspects of the macroscopic behavior. A thorough understanding of the sheath dynamics is therefore of theoretical and p ractical importance. This work focusses on the so-called algebraic approach which strives to describe the electrical behavior of RF modulated boundary sheaths in closed analytical form, i.e., without the need to solve differential equations. A mathematically simple, analytical expression for the charge-voltage relation of a sheath is presented which holds for all excitation wave forms and amplitudes and covers all regimes from the collision-less motion at low gas pressure to the collision dominated motion at gas high pressure. A comparison with the results of self-consistent particle-in-cell simulations is also presented.
During the past two decades, the use of ambient vibrations for modal analysis of structures has increased as compared to the traditional techniques (forced vibrations). The Frequency Domain Decomposition method is nowadays widely used in modal analys is because of its accuracy and simplicity. In this paper, we first present the physical meaning of the FDD method to estimate the modal parameters. We discuss then the process used for the evaluation of the building stiffness deduced from the modal shapes. The models considered here are 1D lumped-mass beams and especially the shear beam. The analytical solution of the equations of motion makes it possible to simulate the motion due to a weak to moderate earthquake and then the inter-storey drift knowing only the modal parameters (modal model). This process is finally applied to a 9-storey reinforced concrete (RC) dwelling in Grenoble (France). We successfully compared the building motion for an artificial ground motion deduced from the model estimated using ambient vibrations and recorded in the building. The stiffness of each storey and the inter-storey drift were also calculated.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا