ترغب بنشر مسار تعليمي؟ اضغط هنا

Transport properties and equation-of-state of hot and dense QGP matter near the critical end-point in the phenomenological dynamical quasi-particle model

134   0   0.0 ( 0 )
 نشر من قبل Olga Soloveva
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We extend the effective dynamical quasi-particle model (DQPM) - constructed for the description of non-perturbative QCD phenomena of the strongly interacting quark-gluon plasma (QGP) - to large baryon chemical potentials including a critical end-point (CEP) and a 1st order phase transition. The DQPM is based on covariant propagators for quarks/antiquarks and gluons that have a finite width in their spectral functions. In DQPM the determination of complex selfenergies for the partonic degrees-of-freedom at zero and finite $mu_B$ has been performed by adjusting the entropy density to the lattice QCD data. The temperature-dependent effective coupling (squared) $g^2(T/T_c)$, as well as the effective masses and widths or the partons are based in this adjustment. The novel extended dynamical quasi-particle model, named DQPM-CP, makes it possible to describe thermodynamical and transport properties of quarks and gluons in a wide range of temperature, $T$, and baryon chemical potential, $mu_B$, and reproduces the equation-of-state (EoS) of lattice QCD calculations in the crossover region of finite $T, mu_B$. We apply a scaling ansatz for the strong coupling constant near the CEP, located at ($T^{CEP}$, $mu^{CEP}_B) = (0.100, 0.960)$ GeV. We show the EoS as well as the speed of sound for $T>T_c$ and for a wide range of $mu_B$, which can be of interest for hydrodynamical simulations. Furthermore, we consider two settings for the strange quark chemical potentials (I) $mu_q=mu_u=mu_s=mu_B/3$ and (II) $mu_s=0,mu_u=mu_d=mu_B/3$. The isentropic trajectories of the QGP matter are compared for these two cases. The phase diagram of DQPM-CP is close to PNJL calculations. The leading order pQCD transport coefficients of both approaches differ. This elucidates that the knowledge of the phase diagram alone is not sufficient to describe the dynamical evolution of strongly interacting matter.



قيم البحث

اقرأ أيضاً

Recent developments in the theory of pure neutron matter and experiments concerning the symmetry energy of nuclear matter, coupled with recent measurements of high-mass neutron stars, now allow for relatively tight constraints on the equation of stat e of dense matter. We review how these constraints are formulated and describe the implications they have for neutron stars and core-collapse supernovae. We also examine thermal properties of dense matter, which are important for supernovae and neutron star mergers, but which cannot be nearly as well constrained at this time by experiment. In addition, we consider the role of the equation of state in medium-energy heavy-ion collisions.
We present an estimate of the behaviour of the shear and bulk viscosity coefficients when the QCD critical point is approached from the hadronic side, describing hadronic matter within the statistical bootstrap model (SBM) of strong interactions. The boostrap model shows critical behavior near the quark-hadron transition temperature if the parameter characterizing the degeneracy of Hagedorn states is properly chosen. We calculate the critical exponents and amplitudes of relevant thermodynamic quantities near the QCD critical point and combine them with an Ansatz for the shear and bulk viscosity coefficients to derive the behavior of these coefficients near the critical point. The shear viscosity to entropy density ratio is found to decrease when the temperature is increased, and to approach the Kovtun-Son-Starinets bound 1/(4{pi}) faster near the critical point, while the bulk viscosity coefficient is found to rise very rapidly.
We compute the transport coefficients, namely, the coefficients of shear and bulk viscosity as well as thermal conductivity for hot and dense quark matter. The calculations are performed within the Nambu- Jona Lasinio (NJL) model. The estimation of t he transport coefficients is made using a quasiparticle approach of solving the Boltzmann kinetic equation within the relaxation time approximation. The transition rates are calculated in a manifestly covariant manner to estimate the thermal-averaged cross sections for quark-quark and quark-antiquark scattering. The calculations are performed for finite chemical potential also. Within the parameters of the model, the ratio of shear viscosity to entropy density has a minimum at the Mott transition temperature. At vanishing chemical potential, the ratio of bulk viscosity to entropy density, on the other hand, decreases with temperature with a sharp decrease near the critical temperature, and vanishes beyond it. At finite chemical potential, however, it increases slowly with temperature beyond the Mott temperature. The coefficient of thermal conductivity also shows a minimum at the critical temperature.
144 - M. Huang , A. Bonasera , Z. Chen 2010
We discuss experimental evidence for a nuclear phase transition driven by the different concentration of neutrons to protons. Different ratios of the neutron to proton concentrations lead to different critical points for the phase transition. This is analogous to the phase transitions occurring in 4He-3He liquid mixtures. We present experimental results which reveal the N/A (or Z/A) dependence of the phase transition and discuss possible implications of these observations in terms of the Landau Free Energy description of critical phenomena.
Within the framework of a multi-phase transport model, we study the equation of state and pressure anisotropy of the hot dense matter produced in central relativistic heavy ion collisions. Both are found to depend on the hadronization scheme and scat tering cross sections used in the model. Furthermore, only partial thermalization is achieved in the produced matter as a result of its fast expansion.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا