ترغب بنشر مسار تعليمي؟ اضغط هنا

Fast Passage Re-ranking with Contextualized Exact Term Matching and Efficient Passage Expansion

70   0   0.0 ( 0 )
 نشر من قبل Shengyao Zhuang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

BERT-based information retrieval models are expensive, in both time (query latency) and computational resources (energy, hardware cost), making many of these models impractical especially under resource constraints. The reliance on a query encoder that only performs tokenization and on the pre-processing of passage representations at indexing, has allowed the recently proposed TILDE method to overcome the high query latency issue typical of BERT-based models. This however is at the expense of a lower effectiveness compared to other BERT-based re-rankers and dense retrievers. In addition, the original TILDE method is characterised by indexes with a very high memory footprint, as it expands each passage into the size of the BERT vocabulary. In this paper, we propose TILDEv2, a new model that stems from the original TILDE but that addresses its limitations. TILDEv2 relies on contextualized exact term matching with expanded passages. This requires to only store in the index the score of tokens that appear in the expanded passages (rather than all the vocabulary), thus producing indexes that are 99% smaller than those of TILDE. This matching mechanism also improves ranking effectiveness by 24%, without adding to the query latency. This makes TILDEv2 the state-of-the-art passage re-ranking method for CPU-only environments, capable of maintaining query latency below 100ms on commodity hardware.

قيم البحث

اقرأ أيضاً

Supervised machine learning models and their evaluation strongly depends on the quality of the underlying dataset. When we search for a relevant piece of information it may appear anywhere in a given passage. However, we observe a bias in the positio n of the correct answer in the text in two popular Question Answering datasets used for passage re-ranking. The excessive favoring of earlier positions inside passages is an unwanted artefact. This leads to three common Transformer-based re-ranking models to ignore relevant parts in unseen passages. More concerningly, as the evaluation set is taken from the same biased distribution, the models overfitting to that bias overestimate their true effectiveness. In this work we analyze position bias on datasets, the contextualized representations, and their effect on retrieval results. We propose a debiasing method for retrieval datasets. Our results show that a model trained on a position-biased dataset exhibits a significant decrease in re-ranking effectiveness when evaluated on a debiased dataset. We demonstrate that by mitigating the position bias, Transformer-based re-ranking models are equally effective on a biased and debiased dataset, as well as more effective in a transfer-learning setting between two differently biased datasets.
Our work aimed at experimentally assessing the benefits of model ensembling within the context of neural methods for passage reranking. Starting from relatively standard neural models, we use a previous technique named Fast Geometric Ensembling to ge nerate multiple model instances from particular training schedules, then focusing or attention on different types of approaches for combining the results from the multiple model instances (e.g., averaging the ranking scores, using fusion methods from the IR literature, or using supervised learning-to-rank). Tests with the MS-MARCO dataset show that model ensembling can indeed benefit the ranking quality, particularly with supervised learning-to-rank although also with unsupervised rank aggregation.
Passage retrieval and ranking is a key task in open-domain question answering and information retrieval. Current effective approaches mostly rely on pre-trained deep language model-based retrievers and rankers. These methods have been shown to effect ively model the semantic matching between queries and passages, also in presence of keyword mismatch, i.e. passages that are relevant to a query but do not contain important query keywords. In this paper we consider the Dense Retriever (DR), a passage retrieval method, and the BERT re-ranker, a popular passage re-ranking method. In this context, we formally investigate how these models respond and adapt to a specific type of keyword mismatch -- that caused by keyword typos occurring in queries. Through empirical investigation, we find that typos can lead to a significant drop in retrieval and ranking effectiveness. We then propose a simple typos-aware training framework for DR and BERT re-ranker to address this issue. Our experimental results on the MS MARCO passage ranking dataset show that, with our proposed typos-aware training, DR and BERT re-ranker can become robust to typos in queries, resulting in significantly improved effectiveness compared to models trained without appropriately accounting for typos.
Recently, dense passage retrieval has become a mainstream approach to finding relevant information in various natural language processing tasks. A number of studies have been devoted to improving the widely adopted dual-encoder architecture. However, most of the previous studies only consider query-centric similarity relation when learning the dual-encoder retriever. In order to capture more comprehensive similarity relations, we propose a novel approach that leverages both query-centric and PAssage-centric sImilarity Relations (called PAIR) for dense passage retrieval. To implement our approach, we make three major technical contributions by introducing formal formulations of the two kinds of similarity relations, generating high-quality pseudo labeled data via knowledge distillation, and designing an effective two-stage training procedure that incorporates passage-centric similarity relation constraint. Extensive experiments show that our approach significantly outperforms previous state-of-the-art models on both MSMARCO and Natural Questions datasets.
The TREC 2009 web ad hoc and relevance feedback tasks used a new document collection, the ClueWeb09 dataset, which was crawled from the general Web in early 2009. This dataset contains 1 billion web pages, a substantial fraction of which are spam --- pages designed to deceive search engines so as to deliver an unwanted payload. We examine the effect of spam on the results of the TREC 2009 web ad hoc and relevance feedback tasks, which used the ClueWeb09 dataset. We show that a simple content-based classifier with minimal training is efficient enough to rank the spamminess of every page in the dataset using a standard personal computer in 48 hours, and effective enough to yield significant and substantive improvements in the fixed-cutoff precision (estP10) as well as rank measures (estR-Precision, StatMAP, MAP) of nearly all submitted runs. Moreover, using a set of honeypot queries the labeling of training data may be reduced to an entirely automatic process. The results of classical information retrieval methods are particularly enhanced by filtering --- from among the worst to among the best.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا