ﻻ يوجد ملخص باللغة العربية
Origami-inspired robots are of particular interest given their potential for rapid and accessible design and fabrication of elegant designs and complex functionalities through cutting and folding of flexible 2D sheets or even strings, i.e.printable manufacturing. Yet, origami robots still require bulky, rigid components or electronics for actuation and control to accomplish tasks with reliability, programmability, ability to output substantial force, and durability, restricting their full potential. Here, we present a printable self-sustained compliant oscillator that generates periodic actuation using only constant electrical power, without discrete components or electronic control hardware. This oscillator is robust (9 out of 10 prototypes worked successfully on the first try), configurable (with tunable periods from 3 s to 12 s), powerful (can overcome hydrodynamic resistance to consistently propel a swimmer at ~1.6 body lengths/min), and long-lasting (~10^3 cycles); it enables driving macroscale devices with prescribed autonomous behaviors, e.g. locomotion and sequencing. This oscillator is also fully functional underwater and in high magnetic fields. Our analytical model characterizes essential parameters of the oscillation period, enabling programmable design of the oscillator. The printable oscillator can be integrated into origami-inspired systems seamlessly and monolithically, allowing rapid design and prototyping; the resulting integrated devices are lightweight, low-cost, compliant, electronic-free, and nonmagnetic, enabling practical applications in extreme areas. We demonstrate the functionalities of the oscillator with: (i) autonomous gliding of a printable swimmer, (ii) LED flashing, and (iii) fluid stirring. This work paves the way for realizing fully printable autonomous robots with a high integration of actuation and control.
Flexible robotics are capable of achieving various functionalities by shape morphing, benefiting from their compliant bodies and reconfigurable structures. Here we construct and study a class of origami springs generalized from the known interleaved
This paper addresses task-allocation problems with uncertainty in situational awareness for distributed autonomous robots (DARs). The uncertainty propagation over a task-allocation process is done by using the Unscented transform that uses the Sigma-
Autonomous oscillators, such as clocks and lasers, produce periodic signals emph{without} any external frequency reference. In order to sustain stable periodic motions, there needs to be external energy supply as well as nonlinearity built into the o
We present a system enabling a modular robot to autonomously build structures in order to accomplish high-level tasks. Building structures allows the robot to surmount large obstacles, expanding the set of tasks it can perform. This addresses a commo
Quadrupeds are strong candidates for navigating challenging environments because of their agile and dynamic designs. This paper presents a methodology that extends the range of exploration for quadrupedal robots by creating an end-to-end navigation f