ترغب بنشر مسار تعليمي؟ اضغط هنا

Box-Adapt: Domain-Adaptive Medical Image Segmentation using Bounding BoxSupervision

100   0   0.0 ( 0 )
 نشر من قبل Yanwu Xu
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Deep learning has achieved remarkable success in medicalimage segmentation, but it usually requires a large numberof images labeled with fine-grained segmentation masks, andthe annotation of these masks can be very expensive andtime-consuming. Therefore, recent methods try to use un-supervised domain adaptation (UDA) methods to borrow in-formation from labeled data from other datasets (source do-mains) to a new dataset (target domain). However, due tothe absence of labels in the target domain, the performance ofUDA methods is much worse than that of the fully supervisedmethod. In this paper, we propose a weakly supervised do-main adaptation setting, in which we can partially label newdatasets with bounding boxes, which are easier and cheaperto obtain than segmentation masks. Accordingly, we proposea new weakly-supervised domain adaptation method calledBox-Adapt, which fully explores the fine-grained segmenta-tion mask in the source domain and the weak bounding boxin the target domain. Our Box-Adapt is a two-stage methodthat first performs joint training on the source and target do-mains, and then conducts self-training with the pseudo-labelsof the target domain. We demonstrate the effectiveness of ourmethod in the liver segmentation task. Weakly supervised do-main adaptation

قيم البحث

اقرأ أيضاً

Unsupervised domain adaptation (DA) has gained substantial interest in semantic segmentation. However, almost all prior arts assume concurrent access to both labeled source and unlabeled target, making them unsuitable for scenarios demanding source-f ree adaptation. In this work, we enable source-free DA by partitioning the task into two: a) source-only domain generalization and b) source-free target adaptation. Towards the former, we provide theoretical insights to develop a multi-head framework trained with a virtually extended multi-source dataset, aiming to balance generalization and specificity. Towards the latter, we utilize the multi-head framework to extract reliable target pseudo-labels for self-training. Additionally, we introduce a novel conditional prior-enforcing auto-encoder that discourages spatial irregularities, thereby enhancing the pseudo-label quality. Experiments on the standard GTA5-to-Cityscapes and SYNTHIA-to-Cityscapes benchmarks show our superiority even against the non-source-free prior-arts. Further, we show our compatibility with online adaptation enabling deployment in a sequentially changing environment.
The domain gap caused mainly by variable medical image quality renders a major obstacle on the path between training a segmentation model in the lab and applying the trained model to unseen clinical data. To address this issue, domain generalization methods have been proposed, which however usually use static convolutions and are less flexible. In this paper, we propose a multi-source domain generalization model, namely domain and content adaptive convolution (DCAC), for medical image segmentation. Specifically, we design the domain adaptive convolution (DAC) module and content adaptive convolution (CAC) module and incorporate both into an encoder-decoder backbone. In the DAC module, a dynamic convolutional head is conditioned on the predicted domain code of the input to make our model adapt to the unseen target domain. In the CAC module, a dynamic convolutional head is conditioned on the global image features to make our model adapt to the test image. We evaluated the DCAC model against the baseline and four state-of-the-art domain generalization methods on the prostate segmentation, COVID-19 lesion segmentation, and optic cup/optic disc segmentation tasks. Our results indicate that the proposed DCAC model outperforms all competing methods on each segmentation task, and also demonstrate the effectiveness of the DAC and CAC modules.
Accurate segmentation for medical images is important for clinical diagnosis. Existing automatic segmentation methods are mainly based on fully supervised learning and have an extremely high demand for precise annotations, which are very costly and t ime-consuming to obtain. To address this problem, we proposed an automatic CT segmentation method based on weakly supervised learning, by which one could train an accurate segmentation model only with weak annotations in the form of bounding boxes. The proposed method is composed of two steps: 1) generating pseudo masks with bounding box annotations by k-means clustering, and 2) iteratively training a 3D U-Net convolutional neural network as a segmentation model. Some data pre-processing methods are used to improve performance. The method was validated on four datasets containing three types of organs with a total of 627 CT volumes. For liver, spleen and kidney segmentation, it achieved an accuracy of 95.19%, 92.11%, and 91.45%, respectively. Experimental results demonstrate that our method is accurate, efficient, and suitable for clinical use.
We propose a segmentation framework that uses deep neural networks and introduce two innovations. First, we describe a biophysics-based domain adaptation method. Second, we propose an automatic method to segment white and gray matter, and cerebrospin al fluid, in addition to tumorous tissue. Regarding our first innovation, we use a domain adaptation framework that combines a novel multispecies biophysical tumor growth model with a generative adversarial model to create realistic looking synthetic multimodal MR images with known segmentation. Regarding our second innovation, we propose an automatic approach to enrich available segmentation data by computing the segmentation for healthy tissues. This segmentation, which is done using diffeomorphic image registration between the BraTS training data and a set of prelabeled atlases, provides more information for training and reduces the class imbalance problem. Our overall approach is not specific to any particular neural network and can be used in conjunction with existing solutions. We demonstrate the performance improvement using a 2D U-Net for the BraTS18 segmentation challenge. Our biophysics based domain adaptation achieves better results, as compared to the existing state-of-the-art GAN model used to create synthetic data for training.
Considering the scarcity of medical data, most datasets in medical image analysis are an order of magnitude smaller than those of natural images. However, most Network Architecture Search (NAS) approaches in medical images focused on specific dataset s and did not take into account the generalization ability of the learned architectures on unseen datasets as well as different domains. In this paper, we address this point by proposing to search for generalizable U-shape architectures on a composited dataset that mixes medical images from multiple segmentation tasks and domains creatively, which is named MixSearch. Specifically, we propose a novel approach to mix multiple small-scale datasets from multiple domains and segmentation tasks to produce a large-scale dataset. Then, a novel weaved encoder-decoder structure is designed to search for a generalized segmentation network in both cell-level and network-level. The network produced by the proposed MixSearch framework achieves state-of-the-art results compared with advanced encoder-decoder networks across various datasets.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا