ﻻ يوجد ملخص باللغة العربية
We consider nonlinear magnon interactions in collinear antiferromagnetic (AF) insulators at finite temperatures. In AF systems with biaxial magnetocrystalline anisotropy, we implement a self-consistent Hartree-Fock mean-field approximation to explore the nonlinear interactions. The resulting nonlinear magnon interactions separate into two-magnon intra- and interband scattering processes. Furthermore, we compute the temperature dependence of the magnon spectrum due to nonlinear magnon interactions for square and hexagonal lattices. Measurements of the predicted AF resonance at different temperatures can probe nonlinear interactions close to the magnetic phase transitions. Our findings establish a framework for exploring magnonic phenomena where interactions are essential, e.g., magnon transport and Bose-Einstein condensation of magnons.
We demonstrate theoretically that the thermal Hall effect of magnons in collinear antiferromagnetic insulators is an indicator of magnetic and topological phase transitions in the magnon spectrum. The transversal heat current of magnons caused by a t
We present a dynamical mean-field study of antiferromagnetic magnons in one-, two- and three-orbital Hubbard model of square and bcc cubic lattice at intermediate coupling strength. Weinvestigate the effect of anisotropy introduced by an external mag
Mean-field approximation is often used to explore the qualitative behaviour of phase transitions in classical spin models before employing computationally costly methods such as the Monte-Carlo techniques. We implement a lattice site-resolved mean-fi
A mean-field approach (MFA) is proposed for the analysis of orientational order in a two-dimensional system of stochastic self-propelled particles interacting by local velocity alignment mechanism. The treatment is applied to the cases of ferromagnet
We present a thorough theoretical assessment of the stability of non-collinear spin arrangements in small palladium clusters. We generally find that ferromagnetic order is always preferred, but that antiferromagnetic and non-collinear configurations