ترغب بنشر مسار تعليمي؟ اضغط هنا

Development of a Clinical Chemical Exchange Saturation Transfer MR fingerprinting (CEST-MRF) Pulse Sequence and Reconstruction for Brain Tumor Quantification

128   0   0.0 ( 0 )
 نشر من قبل Ouri Cohen
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

Purpose: To develop a clinical chemical exchange saturation transfer magnetic resonance fingerprinting (CEST-MRF) pulse sequence and reconstruction method. Methods: The CEST-MRF pulse sequence was modified to conform to hardware limits on clinical scanners while keeping scan time $leqslant$ 2 minutes. The measured data was reconstructed using a deep reconstruction network (DRONE) to yield the water relaxation and chemical exchange parameters. The feasibility of the 6 parameter DRONE reconstruction was tested in simulations in a digital brain phantom. A healthy subject was scanned with the CEST-MRF sequence and a conventional MRF sequence for comparison. The reproducibility was assessed via test-retest experiments and the concordance correlation coefficient (CCC) calculated for white matter (WM) and grey matter (GM). The clinical utility of CEST-MRF was demonstrated in a brain metastasis patient in comparison to standard clinical imaging sequences. The tumor was segmented into edema, solid core and necrotic core regions and the CEST-MRF values compared to the contra-lateral side. Results: The 6 parameter DRONE reconstruction of the digital phantom yielded a mean absolute error of $leqslant$ 6% for all parameters. The CEST-MRF parameters were in good agreement with those from a conventional MRF sequence and previous studies in the literature. The mean CCC for all 6 parameters was 0.79$pm$0.02 in WM and 0.63$pm$0.03 in GM. The CEST-MRF values in nearly all tumor regions were significantly different (p=0.001) from each other and the contra-lateral side. Conclusion: The clinical CEST-MRF sequence provides a method for fast simultaneous quantification of multiple tissue parameters in pathologies.

قيم البحث

اقرأ أيضاً

Purpose: To develop a fast magnetic resonance fingerprinting (MRF) method for quantitative chemical exchange saturation transfer (CEST) imaging. Methods: We implemented a CEST-MRF method to quantify the chemical exchange rate and volume fraction of the N${alpha}$-amine protons of L-arginine (L-Arg) phantoms and the amide and semi-solid exchangeable protons of in vivo rat brain tissue. L-Arg phantoms were made with different concentrations (25-100 mM) and pH (pH 4-6). The MRF acquisition schedule varied the saturation power randomly for 30 iterations (phantom: 0-6 ${mu}$T; in vivo: 0-4 ${mu}$T) with a total acquisition time of <=2 minutes. The signal trajectories were pattern-matched to a large dictionary of signal trajectories simulated using the Bloch-McConnell equations for different combinations of exchange rate, exchangeable proton volume fraction, and water T1 and T2* relaxation times. Results: The chemical exchange rates of the N${alpha}$-amine protons of L-Arg were significantly (p<0.0001) correlated with the rates measured with the Quantitation of Exchange using Saturation Power method. Similarly, the L-Arg concentrations determined using MRF were significantly (p<0.0001) correlated with the known concentrations. The pH dependence of the exchange rate was well fit (R2=0.9186) by a base catalyzed exchange model. The amide proton exchange rate measured in rat brain cortex (36.3+-12.9 Hz) was in good agreement with that measured previously with the Water Exchange spectroscopy method (28.6+-7.4 Hz). The semi-solid proton volume fraction was elevated in white (11.2+-1.7%) compared to gray (7.6+-1.8%) matter brain regions in agreement with previous magnetization transfer studies. Conclusion: CEST-MRF provides a method for fast, quantitative CEST imaging.
Purpose: Magnetization transfer (MT) and inhomogeneous MT (ihMT) contrasts are used in MRI to provide information about macromolecular tissue content. In particular, MT is sensitive to macromolecules and ihMT appears to be specific to myelinated tiss ue. This study proposes a technique to characterize MT and ihMT properties from a single acquisition, producing both semiquantitative contrast ratios, and quantitative parameter maps. Theory and Methods: Building upon previous work that uses multiband radiofrequency (RF) pulses to efficiently generate ihMT contrast, we propose a cyclic-steady-state approach that cycles between multiband and single-band pulses to boost the achieved contrast. Resultant time-variable signals are reminiscent of a magnetic resonance fingerprinting (MRF) acquisition, except that the signal fluctuations are entirely mediated by magnetization transfer effects. A dictionary-based low-rank inversion method is used to reconstruct the resulting images and to produce both semiquantitative MT ratio (MTR) and ihMT ratio (ihMTR) maps, as well as quantitative parameter estimates corresponding to an ihMT tissue model. Results: Phantom and in vivo brain data acquired at 1.5T demonstrate the expected contrast trends, with ihMTR maps showing contrast more specific to white matter (WM), as has been reported by others. Quantitative estimation of semisolid fraction and dipolar T1 was also possible and yielded measurements consistent with literature values in the brain. Conclusions: By cycling between multiband and single-band pulses, an entirely magnetization transfer mediated fingerprinting method was demonstrated. This proof-of-concept approach can be used to generate semiquantitative maps and quantitatively estimate some macromolecular specific tissue parameters.
Purpose: To understand the influence of various acquisition parameters on the ability of CEST MR-Fingerprinting (MRF) to discriminate different chemical exchange parameters and to provide tools for optimal acquisition schedule design and parameter ma p reconstruction. Methods: Numerical simulations were conducted using a parallel-computing implementation of the Bloch-McConnell equations, examining the effect of TR, TE, flip-angle, water T$_{1}$ and T$_{2}$, saturation-pulse duration, power, and frequency on the discrimination ability of CEST-MRF. A modified Euclidean-distance matching metric was evaluated and compared to traditional dot-product matching. L-Arginine phantoms of various concentrations and pH were scanned at 4.7T and the results compared to numerical findings. Results: Simulations for dot-product matching demonstrated that the optimal flip-angle and saturation times are 30$^{circ}$ and 1100 ms, respectively. The optimal maximal saturation power was 3.4 $mu$T for concentrated solutes with a slow exchange-rate, and 5.2 $mu$T for dilute solutes with medium-to-fast exchange-rates. Using the Euclidean-distance matching metric, much lower maximum saturation powers were required (1.6 and 2.4 $mu$T, respectively), with a slightly longer saturation time (1500 ms) and 90$^{circ}$ flip-angle. For both matching metrics, the discrimination ability increased with the repetition time. The experimental results were in agreement with simulations, demonstrating that more than a 50% reduction in scan-time can be achieved by Euclidean-distance-based matching. Conclusion: Optimization of the CEST-MRF acquisition schedule is critical for obtaining the best exchange parameter accuracy. The use of Euclidean-distance-based matching of signal trajectories simultaneously improved the discrimination ability and reduced the scan time and maximal saturation power required.
423 - Qing Li , Xiaozhi Cao , Huihui Ye 2018
Purpose: To demonstrate an ultrashort echo time magnetic resonance fingerprinting (UTE-MRF) method that can simultaneously quantify tissue relaxometries for muscle and bone in musculoskeletal systems and tissue components in brain and therefore can s ynthesize pseudo-CT images. Methods: A FISP-MRF sequence with half pulse excitation and half spoke radial acquisition was designed to sample fast T2 decay signals. Sinusoidal echo time (TE) pattern was applied to enhance MRF sensitivity for tissues with short and ultrashort T2 values. The performance of UTE-MRF was evaluated via simulations, phantoms, and in vivo experiments. Results: A minimal TE of 0.05 ms was achieved in UTE-MRF. Simulations indicated that extension of TE sampling increased T2 quantification accuracy in cortical bone and tendon, and had little impact on long T2 muscle quantifications. For a rubber phantom, an average T1/T2 of 162/1.07 ms from UTE-MRF were compared well with gold standard T2 of 190 ms from IR-UTE and T2* of 1.03 ms from UTE sequence. For a long T2 agarose phantom, the linear regression slope between UTE-MRF and gold standard was 1.07 (R2=0.991) for T1 and 1.04 (R2=0.994) for T2. In vivo experiments showed the detection of cortical bone and Achilles tendon, where the averaged T2 was respectively 1.0 ms and 15 ms. Scalp images were in good agreement with CT. Conclusion: UTE-MRF with sinusoidal TE variations shows its capability to produce pseudo-CT images and simultaneously output T1, T2, proton density, and B0 maps for tissues with long T2 and short/ultrashort T2 in the brain and musculoskeletal system.
Purpose: To improve image quality and accelerate the acquisition of 3D MRF. Methods: Building on the multi-axis spiral-projection MRF technique, a subspace reconstruction with locally low rank (LLR) constraint and a modified spiral-projection spatiot emporal encoding scheme termed tiny-golden-angle-shuffling (TGAS) were implemented for rapid whole-brain high-resolution quantitative mapping. The LLR regularization parameter and the number of subspace bases were tuned using retrospective in-vivo data and simulated examinations, respectively. B0 inhomogeneity correction using multi-frequency interpolation was incorporated into the subspace reconstruction to further improve the image quality by mitigating blurring caused by off-resonance effect. Results: The proposed MRF acquisition and reconstruction framework can produce provide high quality 1-mm isotropic whole-brain quantitative maps in a total acquisition time of 1 minute 55 seconds, with higher-quality results than ones obtained from the previous approach in 6 minutes. The comparison of quantitative results indicates that neither the subspace reconstruction nor the TGAS trajectory induce bias for T1 and T2 mapping. High quality whole-brain MRF data were also obtained at 0.66-mm isotropic resolution in 4 minutes using the proposed technique, where the increased resolution was shown to improve visualization of subtle brain structures. Conclusion: The proposed TGAS-SPI-MRF with optimized spiral-projection trajectory and subspace reconstruction can enable high-resolution quantitative mapping with faster acquisition speed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا