ﻻ يوجد ملخص باللغة العربية
We perform extensive nonlinear numerical simulations of the spherical collapse of (charged) wavepackets onto a charged black hole within Einstein-Maxwell theory and in Einstein-Maxwell-scalar theory featuring nonminimal couplings and a spontaneous scalarization mechanism. We confirm that black holes in full-fledged Einstein-Maxwell theory cannot be overcharged past extremality and no naked singularities form, in agreement with the cosmic censorship conjecture. We show that naked singularities do not form even in Einstein-Maxwell-scalar theory, although it is possible to form scalarized black holes with charge above the Reissner-Nordstrom bound. We argue that charge and mass extraction due to superradiance at fully nonlinear level is crucial to bound the charge-to-mass ratio of the final black hole below extremality. We also discuss some descalarization mechanisms for scalarized black holes induced either by superradiance or by absorption of an opposite-charged wavepacket; in all cases the final state after descalarization is a subextremal Reissner-Nordstrom black hole.
Exact black hole solutions in the Einstein-Maxwell-scalar theory are constructed. They are the extensions of dilaton black holes in de Sitter or anti de Sitter universe. As a result, except for a scalar potential, a coupling function between the scal
It has been shown that the Christodoulou version of the Strong Cosmic Censorship (SCC) conjecture can be violated for a scalar field in a near-extremal Reissner-Nordstrom-de Sitter black hole. In this paper, we investigate the effects of higher deriv
The strong cosmic censorship hypothesis has recently regained a lot of attention in charged and rotating black holes immersed in de Sitter space. Although the picture seems to be clearly leaning towards the validity of the hypothesis in Kerr-de Sitte
In this paper, we discuss about the possibility to enhance the tensor-to-scalar ratio $r$ under the condition of Trans-Planckian censorship conjecture (TCC), thus $rsim O(10^{-3})$ could be observable within the sensitivity of future experiments. We
We construct a specific example of a class of traversable wormholes in Einstein-Dirac-Maxwell theory in four spacetime dimensions, without needing any form of exotic matter. Restricting to a model with two massive fermions in a singlet spinor state,