ﻻ يوجد ملخص باللغة العربية
Motivated by the Weak Gravity Conjecture, we uncover an intricate interplay between black holes, BPS particle counting, and Calabi-Yau geometry in five dimensions. In particular, we point out that extremal BPS black holes exist only in certain directions in the charge lattice, and we argue that these directions fill out a cone that is dual to the cone of effective divisors of the Calabi-Yau threefold. The tower and sublatti
We develop methods for resummation of instanton lattice series. Using these tools, we investigate the consequences of the Weak Gravity Conjecture for large-field axion inflation. We find that the Sublattice Weak Gravity Conjecture implies a constrain
Strong (sublattice or tower) formulations of the Weak Gravity Conjecture (WGC) imply that, if a weakly coupled gauge theory exists, a tower of charged particles drives the theory to strong coupling at an ultraviolet scale well below the Planck scale.
We derive new positivity bounds for scattering amplitudes in theories with a massless graviton in the spectrum in four spacetime dimensions, of relevance for the weak gravity conjecture and modified gravity theories. The bounds imply that extremal bl
In theories with discrete Abelian gauge groups, requiring that black holes be able to lose their charge as they evaporate leads to an upper bound on the product of a charged particles mass and the cutoff scale above which the effective description of
We study one-loop divergences in Einstein-Maxwell theory and their implications for the weak gravity conjecture. In particular, we show that renormalization of these divergences leads to positivity of higher-derivative corrections to the charge-to-ma