ترغب بنشر مسار تعليمي؟ اضغط هنا

Research on Gender-related Fingerprint Features

134   0   0.0 ( 0 )
 نشر من قبل Huawei Lin
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Fingerprint is an important biological feature of human body, which contains abundant gender information. At present, the academic research of fingerprint gender characteristics is generally at the level of understanding, while the standardization research is quite limited. In this work, we propose a more robust method, Dense Dilated Convolution ResNet (DDC-ResNet) to extract valid gender information from fingerprints. By replacing the normal convolution operations with the atrous convolution in the backbone, prior knowledge is provided to keep the edge details and the global reception field can be extended. We explored the results in 3 ways: 1) The efficiency of the DDC-ResNet. 6 typical methods of automatic feature extraction coupling with 9 mainstream classifiers are evaluated in our dataset with fair implementation details. Experimental results demonstrate that the combination of our approach outperforms other combinations in terms of average accuracy and separate-gender accuracy. It reaches 96.5% for average and 0.9752 (males)/0.9548 (females) for separate-gender accuracy. 2) The effect of fingers. It is found that the best performance of classifying gender with separate fingers is achieved by the right ring finger. 3) The effect of specific features. Based on the observations of the concentrations of fingerprints visualized by our approach, it can be inferred that loops and whorls (level 1), bifurcations (level 2), as well as line shapes (level 3) are connected with gender. Finally, we will open source the dataset that contains 6000 fingerprint images



قيم البحث

اقرأ أيضاً

Fingerprint-based recognition has been widely deployed in various applications. However, current recognition systems are vulnerable to spoofing attacks which make use of an artificial replica of a fingerprint to deceive the sensors. In such scenarios , fingerprint liveness detection ensures the actual presence of a real legitimate fingerprint in contrast to a fake self-manufactured synthetic sample. In this paper, we propose a static software-based approach using quality features to detect the liveness in a fingerprint. We have extracted features from a single fingerprint image to overcome the issues faced in dynamic software-based approaches which require longer computational time and user cooperation. The proposed system extracts 8 sensor independent quality features on a local level containing minute details of the ridge-valley structure of real and fake fingerprints. These local quality features constitutes a 13-dimensional feature vector. The system is tested on a publically available dataset of LivDet 2009 competition. The experimental results exhibit supremacy of the proposed method over current state-of-the-art approaches providing least average classification error of 5.3% for LivDet 2009. Additionally, effectiveness of the best performing features over LivDet 2009 is evaluated on the latest LivDet 2015 dataset which contain fingerprints fabricated using unknown spoof materials. An average classification error rate of 4.22% is achieved in comparison with 4.49% obtained by the LivDet 2015 winner. Further, the proposed system utilizes a single fingerprint image, which results in faster implications and makes it more user-friendly.
Fingerprint classification is an effective technique for reducing the candidate numbers of fingerprints in the stage of matching in automatic fingerprint identification system (AFIS). In recent years, deep learning is an emerging technology which has achieved great success in many fields, such as image processing, natural language processing and so on. In this paper, we only choose the orientation field as the input feature and adopt a new method (stacked sparse autoencoders) based on depth neural network for fingerprint classification. For the four-class problem, we achieve a classification of 93.1 percent using the depth network structure which has three hidden layers (with 1.8% rejection) in the NIST-DB4 database. And then we propose a novel method using two classification probabilities for fuzzy classification which can effectively enhance the accuracy of classification. By only adjusting the probability threshold, we get the accuracy of classification is 96.1% (setting threshold is 0.85), 97.2% (setting threshold is 0.90) and 98.0% (setting threshold is 0.95). Using the fuzzy method, we obtain higher accuracy than other methods.
Internet search affects peoples cognition of the world, so mitigating biases in search results and learning fair models is imperative for social good. We study a unique gender bias in image search in this work: the search images are often gender-imba lanced for gender-neutral natural language queries. We diagnose two typical image search models, the specialized model trained on in-domain datasets and the generalized representation model pre-trained on massive image and text data across the internet. Both models suffer from severe gender bias. Therefore, we introduce two novel debiasing approaches: an in-processing fair sampling method to address the gender imbalance issue for training models, and a post-processing feature clipping method base on mutual information to debias multimodal representations of pre-trained models. Extensive experiments on MS-COCO and Flickr30K benchmarks show that our methods significantly reduce the gender bias in image search models.
Human face features can be used to determine individual identity as well as demographic information like gender and race. However, the extent to which black-box commercial face recognition algorithms (CFRAs) use gender and race features to determine identity is poorly understood despite increasing deployments by government and industry. In this study, we quantified the degree to which gender and race features influenced face recognition similarity scores between different people, i.e. non-mated scores. We ran this study using five different CFRAs and a sample of 333 diverse test subjects. As a control, we compared the behavior of these non-mated distributions to a commercial iris recognition algorithm (CIRA). Confirming prior work, all CFRAs produced higher similarity scores for people of the same gender and race, an effect known as broad homogeneity. No such effect was observed for the CIRA. Next, we applied principal components analysis (PCA) to similarity score matrices. We show that some principal components (PCs) of CFRAs cluster people by gender and race, but the majority do not. Demographic clustering in the PCs accounted for only 10 % of the total CFRA score variance. No clustering was observed for the CIRA. This demonstrates that, although CFRAs use some gender and race features to establish identity, most features utilized by current CFRAs are unrelated to gender and race, similar to the iris texture patterns utilized by the CIRA. Finally, reconstruction of similarity score matrices using only PCs that showed no demographic clustering reduced broad homogeneity effects, but also decreased the separation between mated and non-mated scores. This suggests its possible for CFRAs to operate on features unrelated to gender and race, albeit with somewhat lower recognition accuracy, but that this is not the current commercial practice.
Multiple studies have demonstrated that behavior on internet-based social media platforms can be indicative of an individuals mental health status. The widespread availability of such data has spurred interest in mental health research from a computa tional lens. While previous research has raised concerns about possible biases in models produced from this data, no study has quantified how these biases actually manifest themselves with respect to different demographic groups, such as gender and racial/ethnic groups. Here, we analyze the fairness of depression classifiers trained on Twitter data with respect to gender and racial demographic groups. We find that model performance systematically differs for underrepresented groups and that these discrepancies cannot be fully explained by trivial data representation issues. Our study concludes with recommendations on how to avoid these biases in future research.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا