ﻻ يوجد ملخص باللغة العربية
For a matrix $mathbf a=(a_{m, n})_{m, n=1}^{infty},$ the Dirichlet series kernel $kappa_{mathbf a}(s, u)$ is the double Dirichlet series $sum_{m, n =1}^{infty} a_{m, n}m^{-s} n^{-overline{u}}$ in the variables $s$ and $overline{u},$ which is regularly convergent on some right half-plane $mathbb H_{rho}.$ If the coefficient matrix $mathbf a$ of $kappa_{mathbf a}$ is formally positive semi-definite, then there exists a Hilbert space $mathscr H_{mathbf a}$ with the reproducing kernel $kappa_{mathbf a}.$ The analytic symbols $A_{n, mathbf a} = sum_{m=1}^{infty} a_{m, n}m^{-s},$ $n geq 1,$ associated with $mathbf a$ plays a central role in the study of the reproducing kernel Hilbert spaces $mathscr H_{mathbf a}.$ In particular, they form a total subset of $mathscr H_{mathbf a}$ and provide the formula $sum_{n=1}^{infty}langle{f, A_{n, mathbf a}}rangle n^{-s},$ $s in mathbb H_rho,$ for $f$ in $mathscr H_{mathbf a}.$ We also discuss the role of the analytic symbols in the study of Helson matrices generated by a Radon measure on $(0, infty).$ We focus on two families of Helson matrices; one arising from a weighted Lebesgue measure (a prototype is the multiplicative Hilbert matrix) and another from a discrete measure (a prototype is finite or infinite sum of rank one operators), and analyse the structural differences between them. We further relate the Schatten $p$-class membership of Helson matrices $mathbf a$ to the $ell^p$ membership of the sequence of norms of the associated analytic symbols $A_{n, mathbf a}$ and discuss applications to the spectral theory of Helson matrices.
We consider reproducing kernel Hilbert spaces of Dirichlet series with kernels of the form $k(s,u) = sum a_n n^{-s-bar u}$, and characterize when such a space is a complete Pick space. We then discuss what it means for two reproducing kernel Hilbert
Corresponding to any $(m-1)$-tuple of semi-spectral measures on the unit circle, a weighted Dirichlet-type space is introduced and studied. We prove that the operator of multiplication by the coordinate function on these weighted Dirichlet-type space
We introduce a mean counting function for Dirichlet series, which plays the same role in the function theory of Hardy spaces of Dirichlet series as the Nevanlinna counting function does in the classical theory. The existence of the mean counting func
We consider composition operators $mathscr{C}_varphi$ on the Hardy space of Dirichlet series $mathscr{H}^2$, generated by Dirichlet series symbols $varphi$. We prove two different subordination principles for such operators. One concerns affine symbo
Let $mathscr{H}^2$ denote the Hilbert space of Dirichlet series with square-summable coefficients. We study composition operators $mathscr{C}_varphi$ on $mathscr{H}^2$ which are generated by symbols of the form $varphi(s) = c_0s + sum_{ngeq1} c_n n^{