ﻻ يوجد ملخص باللغة العربية
The temperature of the chiral restoration phase transition at 130 MeV as well as the temperature of the center symmetry (deconfinement) phase transition in a pure glue theory at 300 MeV are two independent temperatures and their interplay determines a structure of different regimes of hot QCD. Given a chiral spin symmetry of the color charge and of the chromoelectric interaction we can conclude from observed symmetries of spatial and temporal correlators of N_F=2 QCD with domain wall Dirac operator at physical quark masses that above the chiral symmetry restoration crossover around T_pc but below rougly 3T_pc there should exist an intermediate regime (the stringy fluid) of hot QCD that is characterized by approximate chiral spin symmetry and where degrees of freedom are chirally symmetric quarks bound into color singlet objects by the chromoelectric field. Above this intermediate regime the color charge and the chromoelectric field are Debye screened and one observes a transition to QGP with magnetic confinement.
Based on a complete set of $J = 0$ and $J=1$ spatial isovector correlation functions calculated with $N_F = 2$ domain wall fermions we identify an intermediate temperature regime of $T sim 220 - 500$ MeV ($1.2T_c$--$2.8T_c$), where chiral symmetry is
We study spatial isovector meson correlators in $N_f=2$ QCD with dynamical domain-wall fermions on $32^3times 8$ lattices at temperatures $T=220-380$ MeV. We measure the correlators of spin-one ($J=1$) operators including vector, axial-vector, tensor
Precision experimental tests of the Standard Model of particle physics (SM) are one of our best hopes for discovering what new physics lies beyond the SM (BSM). Key in the search for new physics is the connection between theory and experiment. Forgin
We investigate the nature of the chiral phase transition in the massless two-flavor QCD using the renormalization group improved gauge action and the Wilson quark action on $32^3times 16$, $24^3times 12$, and $16^3times 8$ lattices. We calculate the
We propose a method to use lattice QCD to compute the Borel transform of the vacuum polarization function appearing in the Shifman-Vainshtein-Zakharov (SVZ) QCD sum rule. We construct the spectral sum corresponding to the Borel transform from two-poi