ترغب بنشر مسار تعليمي؟ اضغط هنا

Unbiased IoU for Spherical Image Object Detection

85   0   0.0 ( 0 )
 نشر من قبل Bin Chen
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

As one of the most fundamental and challenging problems in computer vision, object detection tries to locate object instances and find their categories in natural images. The most important step in the evaluation of object detection algorithm is calculating the intersection-over-union (IoU) between the predicted bounding box and the ground truth one. Although this procedure is well-defined and solved for planar images, it is not easy for spherical image object detection. Existing methods either compute the IoUs based on biased bounding box representations or make excessive approximations, thus would give incorrect results. In this paper, we first identify that spherical rectangles are unbiased bounding boxes for objects in spherical images, and then propose an analytical method for IoU calculation without any approximations. Based on the unbiased representation and calculation, we also present an anchor free object detection algorithm for spherical images. The experiments on two spherical object detection datasets show that the proposed method can achieve better performance than existing methods.

قيم البحث

اقرأ أيضاً

We present Boundary IoU (Intersection-over-Union), a new segmentation evaluation measure focused on boundary quality. We perform an extensive analysis across different error types and object sizes and show that Boundary IoU is significantly more sens itive than the standard Mask IoU measure to boundary errors for large objects and does not over-penalize errors on smaller objects. The new quality measure displays several desirable characteristics like symmetry w.r.t. prediction/ground truth pairs and balanced responsiveness across scales, which makes it more suitable for segmentation evaluation than other boundary-focused measures like Trimap IoU and F-measure. Based on Boundary IoU, we update the standard evaluation protocols for instance and panoptic segmentation tasks by proposing the Boundary AP (Average Precision) and Boundary PQ (Panoptic Quality) metrics, respectively. Our experiments show that the new evaluation metrics track boundary quality improvements that are generally overlooked by current Mask IoU-based evaluation metrics. We hope that the adoption of the new boundary-sensitive evaluation metrics will lead to rapid progress in segmentation methods that improve boundary quality.
Semi-supervised learning, i.e., training networks with both labeled and unlabeled data, has made significant progress recently. However, existing works have primarily focused on image classification tasks and neglected object detection which requires more annotation effort. In this work, we revisit the Semi-Supervised Object Detection (SS-OD) and identify the pseudo-labeling bias issue in SS-OD. To address this, we introduce Unbiased Teacher, a simple yet effective approach that jointly trains a student and a gradually progressing teacher in a mutually-beneficial manner. Together with a class-balance loss to downweight overly confident pseudo-labels, Unbiased Teacher consistently improved state-of-the-art methods by significant margins on COCO-standard, COCO-additional, and VOC datasets. Specifically, Unbiased Teacher achieves 6.8 absolute mAP improvements against state-of-the-art method when using 1% of labeled data on MS-COCO, achieves around 10 mAP improvements against the supervised baseline when using only 0.5, 1, 2% of labeled data on MS-COCO.
75 - He Wang , Yezhen Cong , Or Litany 2020
3D object detection is an important yet demanding task that heavily relies on difficult to obtain 3D annotations. To reduce the required amount of supervision, we propose 3DIoUMatch, a novel semi-supervised method for 3D object detection applicable t o both indoor and outdoor scenes. We leverage a teacher-student mutual learning framework to propagate information from the labeled to the unlabeled train set in the form of pseudo-labels. However, due to the high task complexity, we observe that the pseudo-labels suffer from significant noise and are thus not directly usable. To that end, we introduce a confidence-based filtering mechanism, inspired by FixMatch. We set confidence thresholds based upon the predicted objectness and class probability to filter low-quality pseudo-labels. While effective, we observe that these two measures do not sufficiently capture localization quality. We therefore propose to use the estimated 3D IoU as a localization metric and set category-aware self-adjusted thresholds to filter poorly localized proposals. We adopt VoteNet as our backbone detector on indoor datasets while we use PV-RCNN on the autonomous driving dataset, KITTI. Our method consistently improves state-of-the-art methods on both ScanNet and SUN-RGBD benchmarks by significant margins under all label ratios (including fully labeled setting). For example, when training using only 10% labeled data on ScanNet, 3DIoUMatch achieves 7.7% absolute improvement on [email protected] and 8.5% absolute improvement on [email protected] upon the prior art. On KITTI, we are the first to demonstrate semi-supervised 3D object detection and our method surpasses a fully supervised baseline from 1.8% to 7.6% under different label ratios and categories.
For most of the anchor-based detectors, Intersection over Union(IoU) is widely utilized to assign targets for the anchors during training. However, IoU pays insufficient attention to the closeness of the anchors center to the truth boxs center. This results in two problems: (1) only one anchor is assigned to most of the slender objects which leads to insufficient supervision information for the slender objects during training and the performance on the slender objects is hurt; (2) IoU can not accurately represent the alignment degree between the receptive field of the feature at the anchors center and the object. Thus during training, some features whose receptive field aligns better with objects are missing while some features whose receptive field aligns worse with objects are adopted. This hurts the localization accuracy of models. To solve these problems, we firstly design Gaussian Guided IoU(GGIoU) which focuses more attention on the closeness of the anchors center to the truth boxs center. Then we propose GGIoU-balanced learning method including GGIoU-guided assignment strategy and GGIoU-balanced localization loss. The method can assign multiple anchors for each slender object and bias the training process to the features well-aligned with objects. Extensive experiments on the popular benchmarks such as PASCAL VOC and MS COCO demonstrate GGIoU-balanced learning can solve the above problems and substantially improve the performance of the object detection model, especially in the localization accuracy.
Current anchor-free object detectors are quite simple and effective yet lack accurate label assignment methods, which limits their potential in competing with classic anchor-based models that are supported by well-designed assignment methods based on the Intersection-over-Union~(IoU) metric. In this paper, we present textbf{Pseudo-Intersection-over-Union~(Pseudo-IoU)}: a simple metric that brings more standardized and accurate assignment rule into anchor-free object detection frameworks without any additional computational cost or extra parameters for training and testing, making it possible to further improve anchor-free object detection by utilizing training samples of good quality under effective assignment rules that have been previously applied in anchor-based methods. By incorporating Pseudo-IoU metric into an end-to-end single-stage anchor-free object detection framework, we observe consistent improvements in their performance on general object detection benchmarks such as PASCAL VOC and MSCOCO. Our method (single-model and single-scale) also achieves comparable performance to other recent state-of-the-art anchor-free methods without bells and whistles. Our code is based on mmdetection toolbox and will be made publicly available at https://github.com/SHI-Labs/Pseudo-IoU-for-Anchor-Free-Object-Detection.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا