ﻻ يوجد ملخص باللغة العربية
In this paper, we prove that discrete Morse functions on digraphs are flat Witten-Morse functions and Witten complexes of transitive digraphs approach to Morse complexes. We construct a chain complex consisting of the formal linear combinations of paths which are not only critical paths of the transitive closure but also allowed elementary paths of the digraph, and prove that the homology of the new chain complex is isomorphic to the path homology. On the basis of the above results, we give the Morse inequalities on digraphs.
A hypergraph can be obtained from a simplicial complex by deleting some non-maximal simplices. In this paper, we study the embedded homology as well as the homology of the (lower-)associated simplicial complexes for hypergraphs. We generalize the dis
We prove that the minimum number of critical points of a Weinstein Morse function on a Weinstein domain of dimension at least six is at most two more than the minimum number of critical points of a smooth Morse function on that domain; if the domain
In this note we use the divisorial Zariski decomposition to give a more intrinsic version of the algebraic Morse inequalities.
We apply Lescops construction of $mathbb{Z}$-equivariant perturbative invariant of knots and 3-manifolds to the explicit equivariant propagator of AL-paths given in arXiv:1403.8030. We obtain an invariant $hat{Z}_n$ of certain equivalence classes of
Let $f:M to mathbb{R}$ be a Morse-Bott function on a compact smooth finite dimensional manifold $M$. The polynomial Morse inequalities and an explicit perturbation of $f$ defined using Morse functions $f_j$ on the critical submanifolds $C_j$ of $f$ s