ترغب بنشر مسار تعليمي؟ اضغط هنا

Structured Outdoor Architecture Reconstruction by Exploration and Classification

93   0   0.0 ( 0 )
 نشر من قبل Fuyang Zhang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper presents an explore-and-classify framework for structured architectural reconstruction from an aerial image. Starting from a potentially imperfect building reconstruction by an existing algorithm, our approach 1) explores the space of building models by modifying the reconstruction via heuristic actions; 2) learns to classify the correctness of building models while generating classification labels based on the ground-truth, and 3) repeat. At test time, we iterate exploration and classification, seeking for a result with the best classification score. We evaluate the approach using initial reconstructions by two baselines and two state-of-the-art reconstruction algorithms. Qualitative and quantitative evaluations demonstrate that our approach consistently improves the reconstruction quality from every initial reconstruction.


قيم البحث

اقرأ أيضاً

This paper proposes a novel message passing neural (MPN) architecture Conv-MPN, which reconstructs an outdoor building as a planar graph from a single RGB image. Conv-MPN is specifically designed for cases where nodes of a graph have explicit spatial embedding. In our problem, nodes correspond to building edges in an image. Conv-MPN is different from MPN in that 1) the feature associated with a node is represented as a feature volume instead of a 1D vector; and 2) convolutions encode messages instead of fully connected layers. Conv-MPN learns to select a true subset of nodes (i.e., building edges) to reconstruct a building planar graph. Our qualitative and quantitative evaluations over 2,000 buildings show that Conv-MPN makes significant improvements over the existing fully neural solutions. We believe that the paper has a potential to open a new line of graph neural network research for structured geometry reconstruction.
Convolutional Architecture for Fast Feature Encoding (CAFFE) [11] is a software package for the training, classifying, and feature extraction of images. The UCF Sports Action dataset is a widely used machine learning dataset that has 200 videos taken in 720x480 resolution of 9 different sporting activities: diving, golf, swinging, kicking, lifting, horseback riding, running, skateboarding, swinging (various gymnastics), and walking. In this report we report on a caffe feature extraction pipeline of images taken from the videos of the UCF Sports Action dataset. A similar test was performed on overfeat, and results were inferior to caffe. This study is intended to explore the architecture and hyper parameters needed for effective static analysis of action in videos and classification over a variety of image datasets.
Active stereo cameras that recover depth from structured light captures have become a cornerstone sensor modality for 3D scene reconstruction and understanding tasks across application domains. Existing active stereo cameras project a pseudo-random d ot pattern on object surfaces to extract disparity independently of object texture. Such hand-crafted patterns are designed in isolation from the scene statistics, ambient illumination conditions, and the reconstruction method. In this work, we propose the first method to jointly learn structured illumination and reconstruction, parameterized by a diffractive optical element and a neural network, in an end-to-end fashion. To this end, we introduce a novel differentiable image formation model for active stereo, relying on both wave and geometric optics, and a novel trinocular reconstruction network. The jointly optimized pattern, which we dub Polka Lines, together with the reconstruction network, achieve state-of-the-art active-stereo depth estimates across imaging conditions. We validate the proposed method in simulation and on a hardware prototype, and show that our method outperforms existing active stereo systems.
The looming end of Moores Law and ascending use of deep learning drives the design of custom accelerators that are optimized for specific neural architectures. Architecture exploration for such accelerators forms a challenging constrained optimizatio n problem over a complex, high-dimensional, and structured input space with a costly to evaluate objective function. Existing approaches for accelerator design are sample-inefficient and do not transfer knowledge between related optimizations tasks with different design constraints, such as area and/or latency budget, or neural architecture configurations. In this work, we propose a transferable architecture exploration framework, dubbed Apollo, that leverages recent advances in black-box function optimization for sample-efficient accelerator design. We use this framework to optimize accelerator configurations of a diverse set of neural architectures with alternative design constraints. We show that our framework finds high reward design configurations (up to 24.6% speedup) more sample-efficiently than a baseline black-box optimization approach. We further show that by transferring knowledge between target architectures with different design constraints, Apollo is able to find optimal configurations faster and often with better objective value (up to 25% improvements). This encouraging outcome portrays a promising path forward to facilitate generating higher quality accelerators.
With the complexity of the network structure, uncertainty inference has become an important task to improve the classification accuracy for artificial intelligence systems. For image classification tasks, we propose a structured DropConnect (SDC) fra mework to model the output of a deep neural network by a Dirichlet distribution. We introduce a DropConnect strategy on weights in the fully connected layers during training. In test, we split the network into several sub-networks, and then model the Dirichlet distribution by match its moments with the mean and variance of the outputs of these sub-networks. The entropy of the estimated Dirichlet distribution is finally utilized for uncertainty inference. In this paper, this framework is implemented on LeNet$5$ and VGG$16$ models for misclassification detection and out-of-distribution detection on MNIST and CIFAR-$10$ datasets. Experimental results show that the performance of the proposed SDC can be comparable to other uncertainty inference methods. Furthermore, the SDC is adapted well to different network structures with certain generalization capabilities and research prospects.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا