ترغب بنشر مسار تعليمي؟ اضغط هنا

Self-interacting Bose-Einstein condensate dark matter from cold dark matter, and constraints from large-scale observables

129   0   0.0 ( 0 )
 نشر من قبل Stian Hartman Mr.
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A scenario for the cosmological evolution of self-interacting Bose-Einstein condensed (SIBEC) dark matter (DM) as the final product of a transition from an initial cold DM (CDM)-like phase is considered, motivated by suggestions in the literature that a cold DM gas might have undergone a Bose-Einstein condensate phase transition. The phenomenological model employed for the cold-SIBEC transition introduces three additional parameters to those already present in $Lambda$CDM; the strength of the DM self-interaction in the SIBEC phase, the time of the transition, and the rate of the transition. Constraints on these extra parameters are obtained from large-scale observables, using the cosmic microwave background (CMB), baryonic acoustic oscillations (BAO) and growth factor measurements, and type Ia supernovae (SNIa) distances. The standard cosmological parameters are found to be unchanged from $Lambda$CDM, and upper bounds on the SIBEC-DM self-interaction for the various transition times and rates are obtained. If, however, SIBEC-DM is responsible for the tendency of low-mass halos to be cored rather than cuspy, then cold-SIBEC transition times around matter-radiation equality and earlier are ruled out.



قيم البحث

اقرأ أيضاً

We show that Dark Matter consisting of bosons of mass of about 1eV or less has critical temperature exceeding the temperature of the universe at all times, and hence would have formed a Bose-Einstein condensate at very early epochs. We also show that the wavefunction of this condensate, via the quantum potential it produces, gives rise to a cosmological constant which may account for the correct dark energy content of our universe. We argue that massive gravitons or axions are viable candidates for these constituents. In the far future this condensate is all that remains of our universe.
We use large-scale cosmological observations to place constraints on the dark-matter pressure, sound speed and viscosity, and infer a limit on the mass of warm-dark-matter particles. Measurements of the cosmic microwave background (CMB) anisotropies constrain the equation of state and sound speed of the dark matter at last scattering at the per mille level. Since the redshifting of collisionless particles universally implies that these quantities scale like $a^{-2}$ absent shell crossing, we infer that today $w_{rm (DM)}< 10^{-10.0}$, $c_{rm s,(DM)}^2 < 10^{-10.7}$ and $c_{rm vis, (DM)}^{2} < 10^{-10.3}$ at the $99%$ confidence level. This very general bound can be translated to model-dependent constraints on dark-matter models: for warm dark matter these constraints imply $m> 70$ eV, assuming it decoupled while relativistic around the same time as the neutrinos; for a cold relic, we show that $m>100$ eV. We separately constrain the properties of the DM fluid on linear scales at late times, and find upper bounds $c_{rm s, (DM)}^2<10^{-5.9}$, $c_{rm vis, (DM)}^{2} < 10^{-5.7}$, with no detection of non-dust properties for the DM.
Cosmological perturbations of sufficiently long wavelength admit a fluid dynamic description. We consider modes with wavevectors below a scale $k_m$ for which the dynamics is only mildly non-linear. The leading effect of modes above that scale can be accounted for by effective non-equilibrium viscosity and pressure terms. For mildly non-linear scales, these mainly arise from momentum transport within the ideal and cold but inhomogeneous fluid, while momentum transport due to more microscopic degrees of freedom is suppressed. As a consequence, concrete expressions with no free parameters, except the matching scale $k_m$, can be derived from matching evolution equations to standard cosmological perturbation theory. Two-loop calculations of the matter power spectrum in the viscous theory lead to excellent agreement with $N$-body simulations up to scales $k=0.2 , h/$Mpc. The convergence properties in the ultraviolet are better than for standard perturbation theory and the results are robust with respect to variations of the matching scale.
We present models of resonant self-interacting dark matter in a dark sector with QCD, based on analogies to the meson spectra in Standard Model QCD. For dark mesons made of two light quarks, we present a simple model that realizes resonant self-inter action (analogous to the $phi$-K-K system) and thermal freeze-out. We also consider asymmetric dark matter composed of heavy and light dark quarks to realize a resonant self-interaction (analogous to the $Upsilon(4S)$-B-B system) and discuss the experimental probes of both setups. Finally, we comment on the possible resonant self-interactions already built into SIMP and ELDER mechanisms while making use of lattice results to determine feasibility.
The neutrino minimal standard model ($ u$MSM) has been tightly constrained in the recent years, either from dark matter (DM) production or from X-ray and small-scale observations. However, current bounds on sterile neutrino DM can be significantly mo dified when considering a $ u$MSM extension, in which the DM candidates interact via a massive (axial) vector field. In particular, standard production mechanisms in the early Universe can be affected through the decay of such a massive mediator. We perform an indirect detection analysis to study how the $ u$MSM parameter-space constraints are affected by said interactions. We compute the X-ray fluxes considering a DM profile that self-consistently accounts for the particle physics model by using an updated version of the Ruffini-Arguelles-Rueda (RAR) fermionic (ino) model, instead of phenomenological profiles such as the Navarro-Frenk-White (NFW) distribution. We show that the RAR profile accounting for interacting DM, is compatible with measurements of the Galaxy rotation curve and constraints on the DM self-interacting cross section from the Bullet cluster. A new analysis of the X-ray NuSTAR data in the central parsec of the Milky Way, is here performed to derive constraints on the self-interacting sterile neutrino parameter-space. Such constraints are stronger than those obtained with commonly used DM profiles, due to the dense DM core characteristic of the RAR profiles.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا