ترغب بنشر مسار تعليمي؟ اضغط هنا

High-resolution international LOFAR observations of 4C~43.15 -- Spectral ages and injection indices in a high-z radio galaxy

99   0   0.0 ( 0 )
 نشر من قبل Frits Sweijen
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Frits Sweijen




اسأل ChatGPT حول البحث

Radio sources with steep spectra are preferentially associated with the most distant galaxies, the $alpha-z$ relation, but the reason for this relation is an open question. The spatial distribution of spectra in high-z radio sources can be used to study this relation, and low-frequency observations are particularly important in understanding the particle acceleration and injection mechanisms. However, the small angular sizes of high-z sources together with the inherently low resolution of low-frequency radio telescopes until now has prevented high angular resolution low-frequency observations of distant objects. Here we present subarcsecond observations of a $z = 2.4$ radio galaxy at frequencies between $121$ MHz and $166$ MHz. We measure the spatial distribution of spectra, and discuss the implications for models of the $alpha-z$ relation. We targeted 4C 43.15 with the High Band Antennas (HBAs) of the textit{International LOFAR Telescope} (ILT) with a range of baselines up to $1300 mathrm{km}$. At the central frequency of $143$ MHz we achieve an angular resolution of $sim 0.3$. By complementing our data with archival textit{Very Large Array} (VLA) data we study the spectral index distribution across 4C 43.15 between $55 mathrm{MHz}$ and $8.4 mathrm{GHz}$ at resolutions of $0.4$ and $0.9$. With a magnetic field strength of $B = 5.2$ nT and fitted injection indices of $alpha^mathrm{north}_mathrm{inj} = -0.8$ and $alpha^mathrm{south}_mathrm{inj} = -0.6$, fitting a Tribble spectral ageing model results in a spectral age of $tau_mathrm{spec} = 1.1 pm 0.1$ Myr. We conclude that our data on 4C 43.15 indicates that inverse Compton losses could become comparable to or exceed synchrotron losses at higher redshifts and that inverse Compton losses could be a viable explanation for the $alpha-z$ relation.

قيم البحث

اقرأ أيضاً

Recently, Saxena et al. (2018) reported the discovery of a possible radio galaxy, J1530$+$1049 at a redshift of z=5.72. We observed the source with the European Very Long Baseline Interferometry Network at $1.7$ GHz. We detected two faint radio featu res with a separation of $sim 400$ mas. The radio power calculated from the VLA flux density by Saxena et al. (2018), and the projected source size derived from our EVN data place J1530$+$1049 among the medium-sized symmetric objects (MSOs) which are thought to be young counterparts of radio galaxies (An and Baan 2012). Thus, our finding is consistent with a radio galaxy in an early phase of its evolution as proposed by Saxena et al. (2018).
We present Low-Frequency Array (LOFAR) telescope observations of the radio-loud gravitational lens systems MG 0751+2716 and CLASS B1600+434. These observations produce images at 300 milliarcseconds (mas) resolution at 150 MHz. In the case of MG 0751+ 2716, lens modelling is used to derive a size estimate of around 2 kpc for the low-frequency source, which is consistent with a previous 27.4 GHz study in the radio continuum with Karl G. Jansky Very Large Array (VLA). This consistency implies that the low-frequency radio source is cospatial with the core-jet structure that forms the radio structure at higher frequencies, and no significant lobe emission or further components associated with star formation are detected within the magnified region of the lens. CLASS B1600+434 is a two-image lens where one of the images passes through the edge-on spiral lensing galaxy, and the low radio frequency allows us to derive limits on propagation effects, namely scattering, in the lensing galaxy. The observed flux density ratio of the two lensed images is 1.19 +/- 0.04 at an observed frequency of 150 MHz. The widths of the two images give an upper limit of 0.035 kpc m^-20/3 on the integrated scattering column through the galaxy at a distance approximately 1 kpc above its plane, under the assumption that image A is not affected by scattering. This is relatively small compared to limits derived through very long baseline interferometry (VLBI) studies of differential scattering in lens systems. These observations demonstrate that LOFAR is an excellent instrument for studying gravitational lenses. We also report on the inability to calibrate three further lens observations: two from early observations that have less well determined station calibration, and a third observation impacted by phase transfer problems.
The radio emitting X-ray binary GRS 1915+105 shows a wide variety of X-ray and radio states. We present a decade of monitoring observations, with the RXTE-ASM and the Ryle Telescope, in conjunction with high-resolution radio observations using MERLIN and the VLBA. Linear polarisation at 1.4 and 1.6 GHz has been spatially resolved in the radio jets, on a scale of ~150 mas and at flux densities of a few mJy. Depolarisation of the core occurs during radio flaring, associated with the ejection of relativistic knots of emission. We have identified the ejection at four epochs of X-ray flaring. Assuming no deceleration, proper motions of 16.5 to 27 mas per day have been observed, supporting the hypothesis of a varying angle to the line-of-sight per ejection, perhaps in a precessing jet.
In this Letter, we report the discovery of a radio halo in the high-redshift galaxy cluster PSZ2 G099.86+58.45 ($z=0.616$) with the LOw Frequency ARray (LOFAR) at 120-168 MHz. This is one of the most distant radio halos discovered so far. The diffuse emission extends over $sim$ 1 Mpc and has a morphology similar to that of the X-ray emission as revealed by XMM-Newton data. The halo is very faint at higher frequencies and is barely detected by follow-up 1-2 GHz Karl G.~Jansky Very Large Array (JVLA) observations, which enable us to constrain the radio spectral index to be $alphaleq 1.5-1.6$, i.e.; with properties between canonical and ultra-steep spectrum radio halos. Radio halos are currently explained as synchrotron radiation from relativistic electrons that are re-accelerated in the intra-cluster medium (ICM) by turbulence driven by energetic mergers. We show that in such a framework radio halos are expected to be relatively common at $sim150$ MHz ($sim30-60%$) in clusters with mass and redshift similar to PSZ2 G099.86+58.45; however, at least 2/3 of these radio halos should have steep spectrum and thus be very faint above $sim 1$ GHz frequencies. Furthermore, since the luminosity of radio halos at high redshift depends strongly on the magnetic field strength in the hosting clusters, future LOFAR observations will also provide vital information on the origin and amplification of magnetic fields in galaxy clusters.
198 - E. Egami 2002
We present near-infrared imaging and spectroscopic observations of two FR II high-redshift radio galaxies (HzRGs), 4C 40.36 (z=2.3) and 4C 39.37 (z=3.2), obtained with the Hubble, Keck, and Hale Telescopes. High resolution images were taken with filt ers both in and out of strong emission lines, and together with the spectroscopic data, the properties of the line and continuum emissions were carefully analyzed. Our analysis of 4C 40.36 and 4C 39.37 shows that strong emission lines (e.g., [O III] 5007 A and H alpha+[N II]) contribute to the broad-band fluxes much more significantly than previously estimated (80% vs. 20-40%), and that when the continuum sources are imaged through line-free filters, they show an extremely compact morphology with a high surface brightness. If we use the R^1/4-law parametrization, their effective radii (r(e)) are only 2-3 kpc while their restframe B-band surface brightnesses at r(e) are I(B) ~ 18 mag/arcsec^2. Compared with z ~ 1 3CR radio galaxies, the former is x3-5 smaller, while the latter is 1-1.5 mag brighter than what is predicted from the I(B)-r(e) correlation. Although exponential profiles produce equally good fits for 4C 40.36 and 4C 39.37, this clearly indicates that with respect to the z~1 3CR radio galaxies, the light distribution of these two HzRGs is much more centrally concentrated. Spectroscopically, 4C 40.36 shows a flat (fnu=const) continuum while 4C 39.37 shows a spectrum as red as that of a local giant elliptical galaxy. Although this difference may be explained in terms of a varying degree of star formation, the similarities of their surface brightness profiles and the submillimeter detection of 4C 39.37 might suggest that the intrinsic spectra is equally blue (young stars or an AGN), and that the difference is the amount of reddening.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا