ترغب بنشر مسار تعليمي؟ اضغط هنا

Towards NNLO+PS Matching with Sector Showers

70   0   0.0 ( 0 )
 نشر من قبل Christian T Preuss
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We outline a new technique for the fully-differential matching of final-state parton showers to NNLO calculations, focussing here on the simplest case of leptonic collisions with two final-state jets. The strategy is facilitated by working in the antenna formalism, making use of NNLO antenna subtraction on the fixed-order side and the sector-antenna framework on the shower side. As long as the combined real-virtual and double-real corrections do not overcompensate the real-emission term in the three-jet region, negative weights can be eliminated from the matching scheme. We describe the implementation of all necessary components in the VINCIA antenna shower in PYTHIA 8.3.



قيم البحث

اقرأ أيضاً

In conventional parton showers (including ones based on dipoles/antennae), a given $(mathrm{Born}+m)$-parton configuration can typically be reached via ${mathcal O}(m!)$ different shower histories. In the context of matrix-element-correction and merg ing procedures, accounting for these histories mandates fairly complex and resource-intensive algorithms. A so far little-explored alternative in the shower context is to divide the branching phase spaces into distinct sectors, each of which only receives contributions from a single branching kernel. This has a number of consequences including making the shower operator bijective; i.e., each parton configuration now has a single unique inverse. As a first step towards developing a full-fledged matrix-element-correction and merging procedure based on such showers, we here extend the sector approach for antenna showers to hadron-hadron collisions, including mass and helicity dependence.
The recently proposed MUonE experiment at CERN aims at providing a novel determination of the leading order hadronic contribution to the muon anomalous magnetic moment through the study of elastic muon-electron scattering at relatively small momentum transfer. The anticipated accuracy of the order of 10ppm demands for high-precision predictions, including all the relevant radiative corrections. The theoretical formulation for the fixed-order NNLO photonic radiative corrections is described and the impact of the numerical results obtained with the corresponding Monte Carlo code is discussed for typical event selections of the MUonE experiment. In particular, the gauge-invariant subsets of corrections due to electron radiation as well as to muon radiation are treated exactly. The two-loop contribution due to diagrams where at least two virtual photons connect the electron and muon lines is approximated taking inspiration from the classical Yennie-Frautschi-Suura approach. The calculation and its Monte Carlo implementation pave the way towards the realization of a simulation code incorporating the full set of NNLO corrections matched to multiple photon radiation, that will be ultimately needed for data analysis.
In this talk, we discuss recent developments in combining parton showers and fixed-order calculations. We focus on the UNNLOPS method for matching next-to-next-to-leading order computations to the parton shower, and we present results from Sherpa for Drell-Yan lepton-pair and Higgs-boson production at the LHC.
We present a fully automated framework based on the FeynRules and MadGraph5 aMC@NLO programs that allows for accurate simulations of supersymmetric QCD processes at the LHC. Starting directly from a model Lagrangian that features squark and gluino in teractions, event generation is achieved at the next-to-leading order in QCD, matching short-distance events to parton showers and including the subsequent decay of the produced supersymmetric particles. As an application, we study the impact of higher-order corrections in gluino pair-production in a simplified benchmark scenario inspired by current gluino LHC searches.
We examine the robustness of collider phenomenology predictions for a dark sector scenario with QCD-like properties. Pair production of dark quarks at the LHC can result in a wide variety of signatures, depending on the details of the new physics mod el. A particularly challenging signal results when prompt production induces a parton shower that yields a high multiplicity of collimated dark hadrons with subsequent decays to Standard Model hadrons. The final states contain jets whose substructure encodes their non-QCD origin. This is a relatively subtle signature of strongly coupled beyond the Standard Model dynamics, and thus it is crucial that analyses incorporate systematic errors to account for the approximations that are being made when modeling the signal. We estimate theoretical uncertainties for a canonical substructure observable designed to be sensitive to the gauge structure of the underlying object, the two-point energy correlator $e_2^{(beta)}$, by computing envelopes between resummed analytic distributions and numerical results from Pythia. We explore the separability against the QCD background as the confinement scale, number of colors, number of flavors, and dark quark masses are varied. Additionally, we investigate the uncertainties inherent to modeling dark sector hadronization. Simple estimates are provided that quantify ones ability to distinguish these dark sector jets from the overwhelming QCD background. Such a search would benefit from theory advances to improve the predictions, and the increase in statistics using the data to be collected at the high luminosity LHC.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا