ﻻ يوجد ملخص باللغة العربية
If dark matter has a finite size, the intrinsic interaction responsible for the structure formation is inevitable from the perspective of dark matter self-scattering. The sketch map of the calculation of the cross-section is shown, and a more realistic realization of the matter and charge distribution, the Chou-Yang model, is used in this paper. A new definition of velocity dependence and the implication on the small cosmological structures are studied. The numerical results show that the amplitude coefficient can affect the self-scattering cross-section to a large extent. In particular, we can restore the excluded parameter space in the presence of a non-vanishing amplitude coefficient. The correct relic density favors the super-heavy dark protons.
It has been argued that the existence of old neutron stars excludes the possibility of non-annihilating light bosonic dark matter, such as that arising in asymmetric dark matter scenarios. If non-annihilating dark matter is captured by neutron stars,
Light dark sectors in thermal contact with the Standard Model naturally produce the observed relic dark matter abundance and are the targets of a broad experimental search program. A key light dark sector model is the pseudo-Dirac fermion with a dark
We present a first calculation of the rate for plasmon production in semiconductors from nuclei recoiling against dark matter. The process is analogous to bremsstrahlung of transverse photon modes, but with a longitudinal plasmon mode emitted instead
We study the mutual relationship between dark matter-electron scattering experiments and possible new dark matter substructure nearby hinted by the Gaia data. We show how kinematic substructure could affect the average and modulation spectra of dark
We consider Wimp annihilations into monochromatic and continuous $gamma$s and the angular distribution of the resulting gammas. We discuss how the WIMP density profile can be reconstructed from the angular dependence of the photon flux.