ترغب بنشر مسار تعليمي؟ اضغط هنا

Constrains on optical emission of FAST-detected FRB 20181130B with GWAC synchronized observations

90   0   0.0 ( 0 )
 نشر من قبل Li-Ping Xin
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Multi-wavelength simultaneous observations are essential to the constraints on the origin of fast radio bursts (FRBs). However, it is a significant observational challenge due to the nature of FRBs as transients with a radio millisecond duration, which occur randomly in the sky regardless of time and position. Here, we report the search for short-time fast optical bursts in the GWAC archived data associated with FRB 20181130B, which were detected by the Five Hundred Meter Spherical Radio Telescope (FAST) and recently reported. No new credible sources were detected in all single GWAC images with an exposure time of 10 s, including image with coverage of the expected arrival time in optical wavelength by taking the high dispersion measurements into account. Our results provide a limiting magnitude of 15.43$pm0.04$ mag in R band, corresponding to a flux density of 1.66 Jy or 8.35 mag in AB system by assuming that the duration of the optical band is similar to that of the radio band of about 10 ms. This limiting magnitude makes the spectral index of $alpha<0.367$ from optical to radio wavelength. The possible existence of longer duration optical emission was also investigated with an upper limits of 0.33 Jy (10.10 mag), 1.74 mJy (15.80 mag) and 0.16 mJy (18.39 mag) for the duration of 50 ms, 10 s and 6060 s, respectively. This undetected scenario could be partially attributed to the shallow detection capability, as well as the high inferred distance of FRB 20181130B and the low fluence in radio wavelength. The future detectability of optical flashes associated with nearby and bright FRBs are also discussed in this paper.

قيم البحث

اقرأ أيضاً

We present a catalog of 536 fast radio bursts (FRBs) detected by the Canadian Hydrogen Intensity Mapping Experiment Fast Radio Burst (CHIME/FRB) Project between 400 and 800 MHz from 2018 July 25 to 2019 July 1, including 62 bursts from 18 previously reported repeating sources. The catalog represents the first large sample, including bursts from repeaters and non-repeaters, observed in a single survey with uniform selection effects. This facilitates comparative and absolute studies of the FRB population. We show that repeaters and apparent non-repeaters have sky locations and dispersion measures (DMs) that are consistent with being drawn from the same distribution. However, bursts from repeating sources differ from apparent non-repeaters in intrinsic temporal width and spectral bandwidth. Through injection of simulated events into our detection pipeline, we perform an absolute calibration of selection effects to account for systematic biases. We find evidence for a population of FRBs - comprising a large fraction of the overall population - with a scattering time at 600 MHz in excess of 10 ms, of which only a small fraction are observed by CHIME/FRB. We infer a power-law index for the cumulative fluence distribution of $alpha=-1.40pm0.11(textrm{stat.})^{+0.06}_{-0.09}(textrm{sys.})$, consistent with the $-3/2$ expectation for a non-evolving population in Euclidean space. We find $alpha$ is steeper for high-DM events and shallower for low-DM events, which is what would be expected when DM is correlated with distance. We infer a sky rate of $[820pm60(textrm{stat.})^{+220}_{-200}({textrm{sys.}})]/textrm{sky}/textrm{day}$ above a fluence of 5 Jy ms at 600 MHz, with scattering time at $600$ MHz under 10 ms, and DM above 100 pc cm$^{-3}$.
The millisecond-duration radio flashes known as Fast Radio Bursts (FRBs) represent an enigmatic astrophysical phenomenon. Recently, the sub-arcsecond localization (~ 100mas precision) of FRB121102 using the VLA has led to its unambiguous association with persistent radio and optical counterparts, and to the identification of its host galaxy. However, an even more precise localization is needed in order to probe the direct physical relationship between the millisecond bursts themselves and the associated persistent emission. Here we report very-long-baseline radio interferometric observations using the European VLBI Network and the 305-m Arecibo telescope, which simultaneously detect both the bursts and the persistent radio emission at milliarcsecond angular scales and show that they are co-located to within a projected linear separation of < 40pc (< 12mas angular separation, at 95% confidence). We detect consistent angular broadening of the bursts and persistent radio source (~ 2-4mas at 1.7GHz), which are both similar to the expected Milky Way scattering contribution. The persistent radio source has a projected size constrained to be < 0.7pc (< 0.2mas angular extent at 5.0GHz) and a lower limit for the brightness temperature of T_b > 5 x 10^7K. Together, these observations provide strong evidence for a direct physical link between FRB121102 and the compact persistent radio source. We argue that a burst source associated with a low-luminosity active galactic nucleus or a young neutron star energizing a supernova remnant are the two scenarios for FRB121102 that best match the observed data.
Fast radio bursts (FRBs) are mysterious extragalactic radio signals. Revealing their origin is one of the central foci in modern astronomy. Previous studies suggest that occurrence rates of non-repeating and repeating FRBs could be controlled by the cosmic stellar-mass density (CSMD) and star formation-rate density (CSFRD), respectively. The Square Kilometre Array (SKA) is one of the best future instruments to address this subject due to its high sensitivity and high-angular resolution. Here, we predict the number of FRBs to be detected with the SKA. In contrast to previous predictions, we estimate the detections of non-repeating and repeating FRBs separately, based on latest observational constraints on their physical properties including the spectral indices, FRB luminosity functions, and their redshift evolutions. We consider two cases of redshift evolution of FRB luminosity functions following either the CSMD or CSFRD. At $zgtrsim2$, $zgtrsim6$ and $zgtrsim10$, non-repeating FRBs will be detected with the SKA at a rate of $sim10^{4}$, $sim10^{2}$, and $sim10$ (sky$^{-1}$ day$^{-1}$), respectively, if their luminosity function follows the CSMD evolution. At $zgtrsim1$, $zgtrsim2$, and $zgtrsim4$, sources of repeating FRBs will be detected at a rate of $sim10^{3}$, $sim10^{2}$, and $lesssim10$ (sky$^{-1}$ day$^{-1}$), respectively, assuming that the redshift evolution of their luminosity function is scaled with the CSFRD. These numbers could change by about one order of magnitude depending on the assumptions on the CSMD and CSFRD. In all cases, abundant FRBs will be detected by the SKA, which will further constrain the luminosity functions and number density evolutions.
Polarimetric observations of Fast Radio Bursts (FRBs) are a powerful resource for better understanding these mysterious sources by directly probing the emission mechanism of the source and the magneto-ionic properties of its environment. We present a pipeline for analysing the polarized signal of FRBs captured by the triggered baseband recording system operating on the FRB survey of The Canadian Hydrogen Intensity Mapping Experiment (CHIME/FRB). Using a combination of simulated and real FRB events, we summarize the main features of the pipeline and highlight the dominant systematics affecting the polarized signal. We compare parametric (QU-fitting) and non-parametric (rotation measure synthesis) methods for determining the Faraday rotation measure (RM) and find the latter method susceptible to systematic errors from known instrumental effects of CHIME/FRB observations. These errors include a leakage artefact that appears as polarized signal near $rm{RMsim 0 ; rad , m^{-2}}$ and an RM sign ambiguity introduced by path length differences in the systems electronics. We apply the pipeline to a bright burst previously reported by citet[FRB 20191219F;][]{Leung2021}, detecting an $mathrm{RM}$ of $rm{+6.074 pm 0.006 pm 0.050 ; rad , m^{-2}}$ with a significant linear polarized fraction ($gtrsim0.87$) and strong evidence for a non-negligible circularly polarized component. Finally, we introduce an RM search method that employs a phase-coherent de-rotation algorithm to correct for intra-channel depolarization in data that retain electric field phase information, and successfully apply it to an unpublished FRB, FRB 20200917A, measuring an $mathrm{RM}$ of $rm{-1294.47 pm 0.10 pm 0.05 ; rad , m^{-2}}$ (the second largest unambiguous RM detection from any FRB source observed to date).
Aims: Following the detection of the fast radio burst FRB150418 by the SUPERB project at the Parkes radio telescope, we aim to search for very-high energy gamma-ray afterglow emission. Methods: Follow-up observations in the very-high energy gamma-ray domain were obtained with the H.E.S.S. imaging atmospheric Cherenkov telescope system within 14.5 hours of the radio burst. Results: The obtained 1.4 hours of gamma-ray observations are presented and discussed. At the 99 % C.L. we obtained an integral upper limit on the gamma-ray flux of (E>350 GeV) < 1.33 x 10^-8 m^-2s^-1. Differential flux upper limits as function of the photon energy were derived and used to constrain the intrinsic high-energy afterglow emission of FRB 150418. Conclusions: No hints for high-energy afterglow emission of FRB 150418 were found. Taking absorption on the extragalactic background light into account and assuming a distance of z = 0.492 based on radio and optical counterpart studies and consistent with the FRB dispersion, we constrain the gamma-ray luminosity at 1 TeV to L < 5.1 x 10^47 erg/s at 99% C.L.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا