ﻻ يوجد ملخص باللغة العربية
Conventional video inpainting is neither object-oriented nor occlusion-aware, making it liable to obvious artifacts when large occluded object regions are inpainted. This paper presents occlusion-aware video object inpainting, which recovers both the complete shape and appearance for occluded objects in videos given their visible mask segmentation. To facilitate this new research, we construct the first large-scale video object inpainting benchmark YouTube-VOI to provide realistic occlusion scenarios with both occluded and visible object masks available. Our technical contribution VOIN jointly performs video object shape completion and occluded texture generation. In particular, the shape completion module models long-range object coherence while the flow completion module recovers accurate flow with sharp motion boundary, for propagating temporally-consistent texture to the same moving object across frames. For more realistic results, VOIN is optimized using both T-PatchGAN and a new spatio-temporal attention-based multi-class discriminator. Finally, we compare VOIN and strong baselines on YouTube-VOI. Experimental results clearly demonstrate the efficacy of our method including inpainting complex and dynamic objects. VOIN degrades gracefully with inaccurate input visible mask.
In this paper, we proposed an unsupervised learning method for estimating the optical flow between video frames, especially to solve the occlusion problem. Occlusion is caused by the movement of an object or the movement of the camera, defined as whe
Video inpainting aims to fill spatio-temporal holes with plausible content in a video. Despite tremendous progress of deep neural networks for image inpainting, it is challenging to extend these methods to the video domain due to the additional time
Monocular 3D object parsing is highly desirable in various scenarios including occlusion reasoning and holistic scene interpretation. We present a deep convolutional neural network (CNN) architecture to localize semantic parts in 2D image and 3D spac
Occlusion is an inevitable and critical problem in unsupervised optical flow learning. Existing methods either treat occlusions equally as non-occluded regions or simply remove them to avoid incorrectness. However, the occlusion regions can provide e
Occlusion removal is an interesting application of image enhancement, for which, existing work suggests manually-annotated or domain-specific occlusion removal. No work tries to address automatic occlusion detection and removal as a context-aware gen