ﻻ يوجد ملخص باللغة العربية
This paper aims to investigate the characteristics of durations of discretionary lane changes (LCs) on freeways based on an enriched dataset containing LC vehicle trajectories of 2905 passenger cars and 433 heavy vehicles. A comprehensive analysis of LC duration is conducted and four stochastic LC duration models are built according to vehicle types and LC directions. It is found that the LC duration varies across different vehicle types and LC directions. The modelling results show that different variables have different effects on LC duration for different vehicle types and LC directions. Fixed-parameter, latent class, and random parameter accelerated hazard time (AFT) models were built considering driver heterogeneity. Results show that heavy vehicle drivers show more heterogeneity. Different variables were found for different vehicle types and LC directions. The results of this study can be beneficial to understand the mechanism of LC process and the influence of LC on traffic flow.
Originally, the decision and control of the lane change of the vehicle were on the human driver. In previous studies, the decision-making of lane-changing of the human drivers was mainly used to increase the individuals benefit. However, the lane-cha
In preparing for connected and autonomous vehicles (CAVs), a worrisome aspect is the transition era which will be characterized by mixed traffic (where CAVs and human-driven vehicles (HDVs) share the roadway). Consistent with expectations that CAVs w
This paper proposes a control method for battery energy storage systems (BESSs) to provide concurrent primary frequency and local voltage regulation services. The actual variable active and reactive power capability of the converter, along with the s
Discretionary lane change (DLC) is a basic but complex maneuver in driving, which aims at reaching a faster speed or better driving conditions, e.g., further line of sight or better ride quality. Although many DLC decision-making models have been stu
Unsignalized intersection cooperation of connected and automated vehicles (CAVs) is able to eliminate green time loss of signalized intersections and improve traffic efficiency. Most of the existing research on unsignalized intersection cooperation c