ﻻ يوجد ملخص باللغة العربية
We consider the two dimensional Schrodinger equation with time dependent delta potential, which represents a model for the dynamics of a quantum particle subject to a point interaction whose strength varies in time. First, we prove global well-posedness of the associated Cauchy problem under general assumptions on the potential and on the initial datum. Then, for a monochromatic periodic potential (which also satisfies a suitable no-resonance condition) we investigate the asymptotic behavior of the survival probability of a bound state of the time-independent problem. Such probability is shown to have a time decay of order $mathcal{O}(t^{-1})$, up to exponentially fast decaying terms.
In this paper we study the time dependent Schrodinger equation with all possible self-adjoint singular interactions located at the origin, which include the $delta$ and $delta$-potentials as well as boundary conditions of Dirichlet, Neumann, and Robi
We present a new hydrodynamic model for synchronization phenomena which is a type of pressureless Euler system with nonlocal interaction forces. This system can be formally derived from the Kuramoto model with inertia, which is a classical model of i
We review previous work on spectral flow in connection with certain self-adjoint model operators ${A(t)}_{tin mathbb{R}}$ on a Hilbert space $mathcal{H}$, joining endpoints $A_pm$, and the index of the operator $D_{A}^{}= (d/d t) + A$ acting in $L^2(
In this paper, we consider the mean field limit of Brownian particles with Coulomb interaction in 3D space. In particular, using a symmetrization technique, we show that the limit measure almost surely is a weak solution to the limiting nonlinear Fok
We prove an analogue of Shnirelman, Zelditch and Colin de Verdieres Quantum Ergodicity Theorems in a case where there is no underlying classical ergodicity. The system we consider is the Laplacian with a delta potential on the square torus. There are