ترغب بنشر مسار تعليمي؟ اضغط هنا

Cross-Modal Graph with Meta Concepts for Video Captioning

349   0   0.0 ( 0 )
 نشر من قبل Hao Wang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Video captioning targets interpreting the complex visual contents as text descriptions, which requires the model to fully understand video scenes including objects and their interactions. Prevailing methods adopt off-the-shelf object detection networks to give object proposals and use the attention mechanism to model the relations between objects. They often miss some undefined semantic concepts of the pretrained model and fail to identify exact predicate relationships between objects. In this paper, we investigate an open research task of generating text descriptions for the given videos, and propose Cross-Modal Graph (CMG) with meta concepts for video captioning. Specifically, to cover the useful semantic concepts in video captions, we weakly learn the corresponding visual regions for text descriptions, where the associated visual regions and textual words are named cross-modal meta concepts. We further build meta concept graphs dynamically with the learned cross-modal meta concepts. We also construct holistic video-level and local frame-level video graphs with the predicted predicates to model video sequence structures. We validate the efficacy of our proposed techniques with extensive experiments and achieve state-of-the-art results on two public datasets.



قيم البحث

اقرأ أيضاً

Automatically describing video, or video captioning, has been widely studied in the multimedia field. This paper proposes a new task of sensor-augmented egocentric-video captioning, a newly constructed dataset for it called MMAC Captions, and a metho d for the newly proposed task that effectively utilizes multi-modal data of video and motion sensors, or inertial measurement units (IMUs). While conventional video captioning tasks have difficulty in dealing with detailed descriptions of human activities due to the limited view of a fixed camera, egocentric vision has greater potential to be used for generating the finer-grained descriptions of human activities on the basis of a much closer view. In addition, we utilize wearable-sensor data as auxiliary information to mitigate the inherent problems in egocentric vision: motion blur, self-occlusion, and out-of-camera-range activities. We propose a method for effectively utilizing the sensor data in combination with the video data on the basis of an attention mechanism that dynamically determines the modality that requires more attention, taking the contextual information into account. We compared the proposed sensor-fusion method with strong baselines on the MMAC Captions dataset and found that using sensor data as supplementary information to the egocentric-video data was beneficial, and that our proposed method outperformed the strong baselines, demonstrating the effectiveness of the proposed method.
Video captioning is a challenging task that requires a deep understanding of visual scenes. State-of-the-art methods generate captions using either scene-level or object-level information but without explicitly modeling object interactions. Thus, the y often fail to make visually grounded predictions, and are sensitive to spurious correlations. In this paper, we propose a novel spatio-temporal graph model for video captioning that exploits object interactions in space and time. Our model builds interpretable links and is able to provide explicit visual grounding. To avoid unstable performance caused by the variable number of objects, we further propose an object-aware knowledge distillation mechanism, in which local object information is used to regularize global scene features. We demonstrate the efficacy of our approach through extensive experiments on two benchmarks, showing our approach yields competitive performance with interpretable predictions.
Video captioning aims to automatically generate natural language sentences that can describe the visual contents of a given video. Existing generative models like encoder-decoder frameworks cannot explicitly explore the object-level interactions and frame-level information from complex spatio-temporal data to generate semantic-rich captions. Our main contribution is to identify three key problems in a joint framework for future video summarization tasks. 1) Enhanced Object Proposal: we propose a novel Conditional Graph that can fuse spatio-temporal information into latent object proposal. 2) Visual Knowledge: Latent Proposal Aggregation is proposed to dynamically extract visual words with higher semantic levels. 3) Sentence Validation: A novel Discriminative Language Validator is proposed to verify generated captions so that key semantic concepts can be effectively preserved. Our experiments on two public datasets (MVSD and MSR-VTT) manifest significant improvements over state-of-the-art approaches on all metrics, especially for BLEU-4 and CIDEr. Our code is available at https://github.com/baiyang4/D-LSG-Video-Caption.
Video captioning aims to automatically generate natural language descriptions of video content, which has drawn a lot of attention recent years. Generating accurate and fine-grained captions needs to not only understand the global content of video, b ut also capture the detailed object information. Meanwhile, video representations have great impact on the quality of generated captions. Thus, it is important for video captioning to capture salient objects with their detailed temporal dynamics, and represent them using discriminative spatio-temporal representations. In this paper, we propose a new video captioning approach based on object-aware aggregation with bidirectional temporal graph (OA-BTG), which captures detailed temporal dynamics for salient objects in video, and learns discriminative spatio-temporal representations by performing object-aware local feature aggregation on detected object regions. The main novelties and advantages are: (1) Bidirectional temporal graph: A bidirectional temporal graph is constructed along and reversely along the temporal order, which provides complementary ways to capture the temporal trajectories for each salient object. (2) Object-aware aggregation: Learnable VLAD (Vector of Locally Aggregated Descriptors) models are constructed on object temporal trajectories and global frame sequence, which performs object-aware aggregation to learn discriminative representations. A hierarchical attention mechanism is also developed to distinguish different contributions of multiple objects. Experiments on two widely-used datasets demonstrate our OA-BTG achieves state-of-the-art performance in terms of BLEU@4, METEOR and CIDEr metrics.
Taking full advantage of the information from both vision and language is critical for the video captioning task. Existing models lack adequate visual representation due to the neglect of interaction between object, and sufficient training for conten t-related words due to long-tailed problems. In this paper, we propose a complete video captioning system including both a novel model and an effective training strategy. Specifically, we propose an object relational graph (ORG) based encoder, which captures more detailed interaction features to enrich visual representation. Meanwhile, we design a teacher-recommended learning (TRL) method to make full use of the successful external language model (ELM) to integrate the abundant linguistic knowledge into the caption model. The ELM generates more semantically similar word proposals which extend the ground-truth words used for training to deal with the long-tailed problem. Experimental evaluations on three benchmarks: MSVD, MSR-VTT and VATEX show the proposed ORG-TRL system achieves state-of-the-art performance. Extensive ablation studies and visualizations illustrate the effectiveness of our system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا