ﻻ يوجد ملخص باللغة العربية
Domain adaptation for semantic segmentation enables to alleviate the need for large-scale pixel-wise annotations. Recently, self-supervised learning (SSL) with a combination of image-to-image translation shows great effectiveness in adaptive segmentation. The most common practice is to perform SSL along with image translation to well align a single domain (the source or target). However, in this single-domain paradigm, unavoidable visual inconsistency raised by image translation may affect subsequent learning. In this paper, based on the observation that domain adaptation frameworks performed in the source and target domain are almost complementary in terms of image translation and SSL, we propose a novel dual path learning (DPL) framework to alleviate visual inconsistency. Concretely, DPL contains two complementary and interactive single-domain adaptation pipelines aligned in source and target domain respectively. The inference of DPL is extremely simple, only one segmentation model in the target domain is employed. Novel technologies such as dual path image translation and dual path adaptive segmentation are proposed to make two paths promote each other in an interactive manner. Experiments on GTA5$rightarrow$Cityscapes and SYNTHIA$rightarrow$Cityscapes scenarios demonstrate the superiority of our DPL model over the state-of-the-art methods. The code and models are available at: url{https://github.com/royee182/DPL}
Since annotating pixel-level labels for semantic segmentation is laborious, leveraging synthetic data is an attractive solution. However, due to the domain gap between synthetic domain and real domain, it is challenging for a model trained with synth
We introduce a novel approach to unsupervised and semi-supervised domain adaptation for semantic segmentation. Unlike many earlier methods that rely on adversarial learning for feature alignment, we leverage contrastive learning to bridge the domain
Domain adaptation is an important task to enable learning when labels are scarce. While most works focus only on the image modality, there are many important multi-modal datasets. In order to leverage multi-modality for domain adaptation, we propose
Unsupervised Domain Adaptation for semantic segmentation has gained immense popularity since it can transfer knowledge from simulation to real (Sim2Real) by largely cutting out the laborious per pixel labeling efforts at real. In this work, we presen
Unsupervised Domain Adaptation (UDA) can tackle the challenge that convolutional neural network(CNN)-based approaches for semantic segmentation heavily rely on the pixel-level annotated data, which is labor-intensive. However, existing UDA approaches