ترغب بنشر مسار تعليمي؟ اضغط هنا

Dark energy interactions near the galactic centre

99   0   0.0 ( 0 )
 نشر من قبل David Benisty
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate scalar-tensor theories, motivated by dark energy models, in the strong gravity regime around the black hole at the centre of our galaxy. In such theories general relativity is modified since the scalar field couples to matter. We consider the most general conformal and disformal couplings of the scalar field to matter to study the orbital behavior of the nearby stars around the galactic star center $Sgr A^{*}$. Markov Chain Monte Carlo (MCMC) simulation yields a bound on the parameters of the couplings of the scalar field to matter. Using Bayesian Analysis yields the first constraints on such theories in the strong gravity regime.


قيم البحث

اقرأ أيضاً

The star S2 orbiting the compact radio source Sgr A* is a precision probe of the gravitational field around the closest massive black hole (candidate). Over the last 2.7 decades we have monitored the stars radial velocity and motion on the sky, mainl y with the SINFONI and NACO adaptive optics (AO) instruments on the ESO VLT, and since 2017, with the four-telescope interferometric beam combiner instrument GRAVITY. In this paper we report the first detection of the General Relativity (GR) Schwarzschild Precession (SP) in S2s orbit. Owing to its highly elliptical orbit (e = 0.88), S2s SP is mainly a kink between the pre-and post-pericentre directions of motion ~ +- 1 year around pericentre passage, relative to the corresponding Kepler orbit. The superb 2017-2019 astrometry of GRAVITY defines the pericentre passage and outgoing direction. The incoming direction is anchored by 118 NACO-AO measurements of S2s position in the infrared reference frame, with an additional 75 direct measurements of the S2-Sgr A* separation during bright states (flares) of Sgr A*. Our 14-parameter model fits for the distance, central mass, the position and motion of the reference frame of the AO astrometry relative to the mass, the six parameters of the orbit, as well as a dimensionless parameter f_SP for the SP (f_SP = 0 for Newton and 1 for GR). From data up to the end of 2019 we robustly detect the SP of S2, del phi = 12 per orbital period. From posterior fitting and MCMC Bayesian analysis with different weighting schemes and bootstrapping we find f_SP = 1.10 +- 0.19. The S2 data are fully consistent with GR. Any extended mass inside S2s orbit cannot exceed ~ 0.1% of the central mass. Any compact third mass inside the central arcsecond must be less than about 1000 M_sun.
In this contribution, we summarize our results concerning the observational constraints on the electric charge associated with the Galactic centre black hole - Sgr A*. According to the no-hair theorem, every astrophysical black hole, including superm assive black holes, is characterized by at most three classical, externally observable parameters - mass, spin, and the electric charge. While the mass and the spin have routinely been measured by several methods, the electric charge has usually been neglected, based on the arguments of efficient discharge in astrophysical plasmas. From a theoretical point of view, the black hole can attain charge due to the mass imbalance between protons and electrons in fully ionized plasmas, which yields about $sim 10^8,{rm C}$ for Sgr A*. The second, induction mechanism concerns rotating Kerr black holes embedded in an external magnetic field, which leads to electric field generation due to the twisting of magnetic field lines. This electric field can be associated with the induced Wald charge, for which we calculate the upper limit of $sim 10^{15},{rm C}$ for Sgr A*. Although the maximum theoretical limit of $sim 10^{15},{rm C}$ is still 12 orders of magnitude smaller than the extremal charge of Sgr A*, we analyse a few astrophysical consequences of having a black hole with a small charge in the Galactic centre. Two most prominent ones are the effect on the X-ray bremsstrahlung profile and the effect on the position of the innermost stable circular orbit.
The observed tightness of the mass discrepancy-acceleration relation (MDAR) poses a fine-tuning challenge to current models of galaxy formation. We propose that this relation could arise from collisional interactions between baryons and dark matter ( DM) particles, without the need for modification of gravity or ad hoc feedback processes. We assume that these interactions satisfy the following three conditions: (i) the relaxation time of DM particles is comparable to the dynamical time in disk galaxies; (ii) DM exchanges energy with baryons due to elastic collisions; (iii) the product between the baryon-DM cross section and the typical energy exchanged in a collision is inversely proportional to the DM number density. We present an example of a particle physics model that gives a DM-baryon cross section with the desired density and velocity dependence. Direct detection constraints require our DM particles to be either very light ($m << m_b$) or very heavy ($m >> m_b$), corresponding respectively to heating and cooling of DM by baryons. In both cases, our mechanism applies and an equilibrium configuration can in principle be reached. Here, we focus on the heavy DM/cooling case as it is technically simpler. Under these assumptions, we find that rotationally-supported disk galaxies could naturally settle to equilibrium configurations satisfying a MDAR at all radii without invoking finely tuned feedback processes. We also discuss issues related to the small scale clumpiness of baryons, as well as predictions for pressure-supported systems. We argue in particular that galaxy clusters do not follow the MDAR despite being DM-dominated because they have not reached their equilibrium configuration. Finally, we revisit existing phenomenological, astrophysical and cosmological constraints on baryon-DM interactions in light of the unusual density dependence of the cross section.
The mirror dark matter (MDM) model of Berezhiani et al. has been shown to reproduce observed galactic rotational curves for a variety of spiral galaxies, and has been presented as an alternative to cold dark matter (CDM) models. We investigate possib le additional tests involving the properties of stellar orbits, which may be used to discriminate between the two models. We demonstrate that in MDM and CDM models fitted equally well to a galactic rotational curve, one generally expects predictable differences in escape speeds from the disc. The recent radial velocity (RAVE) survey of the Milky Way has pinned down the escape speed from the solar neighbourhood to $v_{esc}=544^{+64}_{-46}$ km s$^{-1}$, placing an additional constraint on dark matter models. We have constructed an MDM model for the Milky Way based on its rotational curve, and find an escape speed that is just consistent with the observed value given the current errors, which lends credence to the viability of the MDM model. The Gaia-ESO spectroscopic survey is expected to lead to an even more precise estimate of the escape speed that will further constrain dark matter models. However, the largest differences in stellar escape speeds between both models are predicted for dark matter dominated dwarf galaxies such as DDO 154, and kinematical studies of such galaxies could prove key in establishing, or abolishing, the validity of the MDM model.
We discuss the formation of dark compact objects in a dark matter environment in view of the possible mass dependence of pulsars on the distribution of dark matter in the Galaxy. Our results indicate that the pulsar masses should decrease going towar ds the center of the Milky Way due to dark matter capture, thus becoming a probe for the existence and nature of dark matter. We thus propose that the evolution of the pulsar mass in a dark matter rich environment can be used to put constraints, when combined with future experiments, on the characteristics of our Galaxy halo dark matter profile, on the dark matter particle mass and on the dark matter self-interaction strength.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا