ﻻ يوجد ملخص باللغة العربية
The diffraction limit is a fundamental barrier in optical microscopy, which restricts the smallest resolvable feature size of a microscopic system. Microsphere-based microscopy has proven to be a promosing tool for challenging the diffraction limit. Nevertheless, the microspheres have a low imaging contrast in the air, which hinders the application of this technique. In this Letter, we demonstrate that this challenge can be effectively overcome by using partially Ag-plated microspheres. The deposited Ag film acts as an aperture stop that blocks a portion of the incident beam, forming a photonic hook with oblique near-field illumination. Such a photonic hook significantly enhanced imaging contrast, as experimentally verified by imaging Blu-ray disc surface and silica particle arrays.
It has been shown that negative refraction makes a perfect lens. However, with little loss, the imaging functionality will be strongly compromised. Later on, it was proved that positive refraction from Maxwells fish-eye lens can also makes a perfect
Despite super-resolution fluorescence blinking microscopes break the diffraction limit, the intense phototoxic illumination and long-term image sequences thus far still pose to major challenges in visualizing live-organisms. Here, we proposed a super
Super-resolution imaging with advanced optical systems has been revolutionizing technical analysis in various fields from biological to physical sciences. However, many objects are hidden by strongly scattering media such as rough wall corners or bio
Based on compressive sampling techniques and short exposure imaging, super-resolution imaging with thermal light is experimentally demonstrated exploiting the sparse prior property of images for standard conventional imaging system. Differences betwe
We reveal the existence of optical super-resonance modes supported by dielectric microspheres. These modes,with field-intensity enhancement factors on the order of 10^4-10^5, can be directly obtained from analytical calculations. In contrast to usual