ﻻ يوجد ملخص باللغة العربية
Interaction of atoms with twisted light is the subject of intense experimental and theoretical investigation. In almost all studies, the atom is viewed as a localized probe of the twisted light field. However, as argued in this paper, conceptually novel effects will arise if light-atom interaction is studied in the double-twisted regime with delocalized atoms, that is, either via twisted light absorption by atom vortex beam, or via two-twisted-photon spectroscopy of atoms in a non-vortex but delocalized state. Even for monochromatic twisted photons and for an infinitely narrow line, absorption will occur over a finite range of detuning. Inside this range, a rapidly varying absorption probability is predicted, revealing interference fringes induced by two distinct paths leading to the same final state. The number, location, height and contrast of these fringes can give additional information on the excitation process which would not be accessible in usual spectroscopic settings. Visibility of the predicted effects will be enhanced at the future Gamma factory thanks to the large momenta of ions.
We propose a quantum enhanced interferometric protocol for gravimetry and force sensing using cold atoms in an optical lattice supported by a standing-wave cavity. By loading the atoms in partially delocalized Wannier-Stark states, it is possible to
The discovery of interaction-driven insulating and superconducting phases in moire van der Waals heterostructures has sparked considerable interest in understanding the novel correlated physics of these systems. While a significant number of studies
We investigate Ramsey spectroscopy performed on a synchronized ensemble of two-level atoms. The synchronization is induced by the collective coupling of the atoms to a heavily damped mode of an optical cavity. We show that, in principle, with this sy
In a cavity quantum electrodynamics (QED) system, where atoms coherently interact with photons in a cavity, the eigenstates of the system are the superposition states of atoms and cavity photons, the so-called dressed states of atoms. When two caviti
In the late 80s, Ou and Mandel experimentally observed signal beatings by performing a non-time resolved coincidence detection of two photons having interfered in a balanced beam splitter [Phys. Rev. Lett 61, 54 (1988)]. In this work, we provide a ne