ترغب بنشر مسار تعليمي؟ اضغط هنا

The duality of Fermat and Huygens principles through contact transformations

55   0   0.0 ( 0 )
 نشر من قبل David Garc\\'ia-Pel\\'aez
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this work, we use the geometric equivalence between Fermats and Huygens principles to show that the kinematics of light propagation in a non-dispersive medium associated with a bi-metric spacetime is expressed by means of a 1-parameter family of contact transformations. We present a general technique to find such transformations and explore some explicit examples for different geometric media and interfaces.

قيم البحث

اقرأ أيضاً

125 - Karen Yagdjian 2020
In this article we give sufficient conditions for the generalized Dirac operator to obey the incomplete Huygens principle, as well as necessary and sufficient conditions to obey the Huygens principle by the Dirac operator in the curved spacetime of t he Friedmann-Lema^itre-Robertson-Walker models of cosmology.
115 - Anton Dzhamay 2013
We establish the Lagrangian nature of the discrete isospectral and isomonodromic dynamical systems corresponding to the re-factorization transformations of the rational matrix functions on the Riemann sphere. Specifically, in the isospectral case we generalize the Moser-Veselov approach to integrability of discrete systems via the re-factorization of matrix polynomials to a more general class of matrix rational functions that have a simple divisor and, in the quadratic case, explicitly write the Lagrangian function for such systems. Next we show that if we let certain parameters in this Lagrangian to be time-dependent, the resulting Euler-Lagrange equations describe the isomonodromic transformations of systems of linear difference equations. It is known that in some special cases such equations reduce to the difference Painleve equation. As an example, we show how to obtain the difference Painlev`e V equation in this way, and hence we establish that this equation can be written in the Lagrangian form.
131 - G. Marmo , G. F. Volkert 2010
In this paper we review a proposed geometrical formulation of quantum mechanics. We argue that this geometrization makes available mathematical methods from classical mechanics to the quantum frame work. We apply this formulation to the study of sepa rability and entanglement for states of composite quantum systems.
The Racah algebra encodes the bispectrality of the eponym polynomials. It is known to be the symmetry algebra of the generic superintegrable model on the $2$-sphere. It is further identified as the commutant of the $mathfrak{o}(2) oplus mathfrak{o}(2 ) oplus mathfrak{o}(2)$ subalgebra of $mathfrak{o}(6)$ in oscillator representations of the universal algebra of the latter. How this observation relates to the $mathfrak{su}(1,1)$ Racah problem and the superintegrable model on the $2$-sphere is discussed on the basis of the Howe duality associated to the pair $big(mathfrak{o}(6)$, $mathfrak{su}(1,1)big)$.
Quasinormal modes are the counterparts in open systems of normal modes in conservative systems; defined by outgoing-wave boundary conditions, they have complex eigenvalues. The conditions are studied for a system to have a supersymmetric(SUSY) partne r with the same complex quasinormal-mode spectrum (or the same except for one eigenvalue). The discussion naturally includes total-transmission modes as well(incoming at one extreme and outgoing at the other). Several types of SUSY transformations emerge, and each is illustrated with examples, including the transformation among different Poschl-Teller potentials and the well-known identity in spectrum between the two parity sectors of linearized gravitational waves propagating on a Schwarzschild background. In contrast to the case of normal modes, there may be multiple essentially isospectral partners, each missing a different state. The SUSY transformation preserves orthonormality under a bilinear map which is the analog of the usual inner product for conservative systems. SUSY transformations can lead to doubled quasinormal and total-transmission modes; this phenomenon is analysed and illustrated. The existence or otherwise of SUSY partners is also relevant to the question of inversion: are open wave systems uniquely determined by their complex spectra?
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا