ترغب بنشر مسار تعليمي؟ اضغط هنا

The evolution of lithium in FGK dwarf stars: The Li rotation connection and the Li desert

106   0   0.0 ( 0 )
 نشر من قبل Santi Roca-Fabrega
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate two topics regarding solar mass FGK-type stars, the lithium rotation connection (LRC) and the existence of the lithium desert. We determine the minimum critical rotation velocity ($v sin i$) related with the LRC separating slow from rapid stellar rotators, as being 5 km s$^{-1}$. This value also split different stellar properties. For the first time we explore the behaviour of the LRC for some stellar associations with ages between 45 Myr and 120 Myr. This allows us to study the LRC age dependence at the beginning of the general spin down stage for low mass stars, which starts at $sim$ 30-40 Myr. We find that each stellar group presents a characteristic minimum lithium (Li) depletion connected to a specific large rotation velocity and that this minimum changes with age. For instance, this minimum changes from $sim$ 50 km s$^{-1}$ to less than 20 km s$^{-1}$ in 200 Myr. Regarding the lithium desert, it was described as a limited region in the A(Li)-$T_{rm eff}$ map containing no stars. Using $T_{rm eff}$ from {em Gaia} DR2 we detect 30 stars inside and/or near the same box defined originally as the Li desert. Due to their intrinsic $T_{rm eff}$ errors some of these stars may be inside or outside the box, implying a large probability that the box contains several stars. Considering this last fact the lithium desert appears to be more a statistical distribution fluctuation than a real problem.



قيم البحث

اقرأ أيضاً

The aim of the present study is to determine the Li abundances for a large set of the FGK dwarfs and to analyse the connections between the Li content, stellar parameters, and activity. Atmospheric parameters, rotational velocities and Li abundances were determined from a homogeneous collection of the echelle spectra with high resolution and high signal-to-noise ratio. Rotational velocities vsini were determined by calibrating the cross-correlation function. Effective temperatures Teff were estimated by the line-depth ratio method. Surface gravities log g were computed by two methods: iron ionization balance and parallax. LTE Li abundances were computed using the synthetic spectrum method. The behaviour of the Li abundance was examined in correlation with Teff, [Fe/H], vsini and level of activity in three stellar groups of different temperatures. The stellar parameters and Li abundances are presented for 150 slow rotating stars of the lower part of MS. The studied stars show a decline in the Li abundance with decreasing temperature Teff and a significant spread, which should be due to the differences of age. A correlation between Li abundance, vsini and level of chromospheric activity is seen for stars with 6000>Teff>5700 K, and it is tighter for stars with 5700>Teff>5200 K. Stars with Teff<5200 K do not show any correlation between log A(Li) and vsini. The relationship between chromospheric and coronal fluxes in active stars with detected Li as well as in less active stars gives a hint that there exist different conditions in the action of the dynamo mechanism in those stars. We found that the Li-activity correlation is evident only in a restricted temperature range and the Li abundance spread seems to be present in a group of low chromospheric activity stars that also show a broad spread in chromospheric vs coronal activity.
We previously attempted to ascertain why the Li I 6708 line-strengths of Sun-like stars differ so significantly despite the superficial similarities of stellar parameters. We carried out a comprehensive analysis of 118 solar analogs and reported that a close connection exists between the Li abundance A_Li and the line-broadening width (v_r+m; mainly contributed by rotational effect), which led us to conclude that stellar rotation may be the primary control of the surface Li content. To examine our claim in more detail, we study whether the degree of stellar activity exhibits a similar correlation with the Li abundance, which is expected because of the widely believed close connection between rotation and activity. We measured the residual flux at the line center of the strong Ca II 8542 line, r_0(8542), known to be a useful index of stellar activity, for all sample stars using newly acquired spectra in this near-IR region. The projected rotational velocity (v_e sin i) was estimated by subtracting the macroturbulence contribution from v_r+m that we had already established. A remarkable (positive) correlation was found in the A_Li versus (vs.) r_0(8542) diagram as well as in both the r_0(8542) vs. v_e sin i and A_Li vs. v_e sin i diagrams, as had been expected. With the confirmation of rotation-dependent stellar activity, this clearly shows that the surface Li abundances of these solar analogs progressively decrease as the rotation rate decreases. Given this observational evidence, we conclude that the depletion of surface Li in solar-type stars, probably caused by effective envelope mixing, operates more efficiently as stellar rotation decelerates. It may be promising to attribute the low-Li tendency of planet-host G dwarfs to their different nature in the stellar angular momentum.
144 - B. A. Twarog 2020
Open clusters (OC) of 1-3 Gyr age contain intermediate-to-low-mass stars in evolutionary phases of multiple relevance to understanding Li evolution. Stars leaving the main sequence (MS) from the hot side of the Lithium dip (LD) at a fixed age can inc lude a range of mass, varying degrees of core degeneracy, and helium ignition under quiescent or flash conditions. An ongoing survey of a significant sample of stars from the giant branch to below the LD in key open clusters has revealed patterns that supply critical clues to the underlying source of Li variation among stars of differing mass and age. While the LD is well established in OC of this age, stars on the hot side of the LD can exhibit Li ranging from the apparent primordial cluster value to upper limits similar to those found at the LD center, despite occupying the same region of the color-magnitude diagram (CMD). Stars on the first-ascent giant branch show a dramatic decline in measurable Li that correlates strongly with increasing age and reduced turnoff mass. We discuss how these trends can be explained in the context of the existence of the LD itself and the temporal evolution of individual stars.
168 - L. Monaco 2011
Context. The abundance inhomogeneities of light elements observed in Globular Clusters (GCs), and notably the ubiquitous Na-O anti-correlation, are generally interpreted as evidence that GCs comprise several generations of stars. There is an on-going debate as to the nature of the stars which produce the inhomogeneous elements, and investigating the behavior of several elements is a way to shed new light on this problem. Aims. We aim at investigating the Li and Na content of the GC M 4, that is known to have a well defined Na-O anti-correlation. Methods. We obtained moderate resolution (R=17 000-18 700) spectra for 91 main sequence (MS)/sub-giant branch stars of M 4 with the Giraffe spectrograph at the FLAMES/VLT ESO facility. Using model atmospheres analysis we measured lithium and sodium abundances. Results. We detect a weak Li-Na anti-correlation among un-evolved MS stars. One star in the sample, # 37934, shows the remarkably high lithium abundance A(Li)=2.87, compatible with current estimates of the primordial lithium abundance. Conclusions. The shallow slope found for the Li-Na anti-correlation suggests that lithium is produced in parallel to sodium. This evidence, coupled with its sodium-rich nature, suggests that the high lithium abundance of star # 37934 may originate by pollution from a previous generations of stars. The recent detection of a Li-rich dwarf of pollution origin in the globular cluster NGC 6397 may also point in this direction. Still, no clear cut evidence is available against a possible preservation of the primordial lithium abundance for star # 37934.
The evolution of lithium abundance over a stars lifetime is indicative of transport processes operating in the stellar interior. We revisit the relationship between lithium content and rotation rate previously reported for cool dwarfs in the Pleiades cluster. We derive new LiI 670.8 nm equivalent width measurements from high-resolution spectra obtained for low-mass Pleiades members. We combine these new measurements with previously published ones, and use the Kepler/K2 rotational periods recently derived for Pleiades cool dwarfs to investigate the lithium-rotation connection in this 125 Myr-old cluster. The new data confirm the correlation between lithium equivalent width and stellar spin rate for a sample of 51 early K-type members of the cluster, where fast rotating stars are systematically lithium-rich compared to slowly rotating ones. The correlation is valid for all stars over the (J-Ks) color range 0.50-0.70 mag, corresponding to a mass range from about 0.75 to 0.90 solar mass, and may extend down to lower masses. We argue that the dispersion in lithium equivalent widths observed for cool dwarfs in the Pleiades cluster reflects an intrinsic scatter in lithium abundances, and suggest that the physical origin of the lithium dispersion pattern is to be found in the pre-main sequence rotational history of solar-type stars.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا