ﻻ يوجد ملخص باللغة العربية
Hybrid perovskites are a rapidly growing research area, having reached photovoltaic power conversion efficiencies of over 25 %. We apply a symmetry-motivated analysis method to analyse X-ray pair distribution function data of the cubic phases of the hybrid perovskites MAPb$X_3$ ($X$ = I, Br, Cl). We demonstrate that the local structure of the inorganic components of MAPb$X_3$ ($X$ = I, Br, Cl) are dominated by scissoring type deformations of the Pb$X_6$ octahedra. We find these modes to have a larger amplitude than equivalent distortions in the $A$-site deficient perovskite ScF$_3$ and demonstrate that they show a significant departure from the harmonic approximation. Calculations performed on an all-inorganic analogue to the hybrid perovskite, FrPbBr$_3$, show that the large amplitudes of the scissoring modes are coupled to an opening of the electronic band gap. Finally, we use density functional theory calculations to show that the organic MA cations reorientate to accomodate the large amplitude scissoring modes.
Graphene has shown great application potentials as the host material for next generation electronic devices. However, despite its intriguing properties, one of the biggest hurdles for graphene to be useful as an electronic material is its lacking of
The unprecedented structural flexibility and diversity of inorganic frameworks of layered hybrid halide perovskites (LHHPs) rise up a wide range of useful optoelectronic properties thus predetermining the extraordinary high interest to this family of
The coherence of collective modes, such as phonons, and their modulation of the electronic states are long sought in complex systems, which is a cross-cutting issue in photovoltaics and quantum electronics. In photovoltaic cells and lasers based on m
We report on the energy spectrum of electrons in twisted bilayer graphene (tBLG) obtained by the band-unfolding method in the tight-binding model. We find the band-gap opening at particular points in the reciprocal space, that elucidates the drastic
Sub-angstrom Co coverage, being deposited on BiSbTeSe2(0001) surface at 200-330 C, opens a band gap at the Dirac point, with the shift of the Dirac point position caused by RT adsorbate pre-deposition. Temperature dependent measurements in 15-150 K r