ترغب بنشر مسار تعليمي؟ اضغط هنا

Learning Visual Affordance Grounding from Demonstration Videos

89   0   0.0 ( 0 )
 نشر من قبل Hongchen Luo
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Visual affordance grounding aims to segment all possible interaction regions between people and objects from an image/video, which is beneficial for many applications, such as robot grasping and action recognition. However, existing methods mainly rely on the appearance feature of the objects to segment each region of the image, which face the following two problems: (i) there are multiple possible regions in an object that people interact with; and (ii) there are multiple possible human interactions in the same object region. To address these problems, we propose a Hand-aided Affordance Grounding Network (HAGNet) that leverages the aided clues provided by the position and action of the hand in demonstration videos to eliminate the multiple possibilities and better locate the interaction regions in the object. Specifically, HAG-Net has a dual-branch structure to process the demonstration video and object image. For the video branch, we introduce hand-aided attention to enhance the region around the hand in each video frame and then use the LSTM network to aggregate the action features. For the object branch, we introduce a semantic enhancement module (SEM) to make the network focus on different parts of the object according to the action classes and utilize a distillation loss to align the output features of the object branch with that of the video branch and transfer the knowledge in the video branch to the object branch. Quantitative and qualitative evaluations on two challenging datasets show that our method has achieved stateof-the-art results for affordance grounding. The source code will be made available to the public.



قيم البحث

اقرأ أيضاً

In this paper, we explore a novel task named visual Relation Grounding in Videos (vRGV). The task aims at spatio-temporally localizing the given relations in the form of subject-predicate-object in the videos, so as to provide supportive visual facts for other high-level video-language tasks (e.g., video-language grounding and video question answering). The challenges in this task include but not limited to: (1) both the subject and object are required to be spatio-temporally localized to ground a query relation; (2) the temporal dynamic nature of visual relations in videos is difficult to capture; and (3) the grounding should be achieved without any direct supervision in space and time. To ground the relations, we tackle the challenges by collaboratively optimizing two sequences of regions over a constructed hierarchical spatio-temporal region graph through relation attending and reconstruction, in which we further propose a message passing mechanism by spatial attention shifting between visual entities. Experimental results demonstrate that our model can not only outperform baseline approaches significantly, but also produces visually meaningful facts to support visual grounding. (Code is available at https://github.com/doc-doc/vRGV).
Current methods for learning visually grounded language from videos often rely on text annotation, such as human generated captions or machine generated automatic speech recognition (ASR) transcripts. In this work, we introduce the Audio-Video Langua ge Network (AVLnet), a self-supervised network that learns a shared audio-visual embedding space directly from raw video inputs. To circumvent the need for text annotation, we learn audio-visual representations from randomly segmented video clips and their raw audio waveforms. We train AVLnet on HowTo100M, a large corpus of publicly available instructional videos, and evaluate on image retrieval and video retrieval tasks, achieving state-of-the-art performance. We perform analysis of AVLnets learned representations, showing our model utilizes speech and natural sounds to learn audio-visual concepts. Further, we propose a tri-modal model that jointly processes raw audio, video, and text captions from videos to learn a multi-modal semantic embedding space useful for text-video retrieval. Our code, data, and trained models will be released at avlnet.csail.mit.edu
In this paper, we present a general framework for learning social affordance grammar as a spatiotemporal AND-OR graph (ST-AOG) from RGB-D videos of human interactions, and transfer the grammar to humanoids to enable a real-time motion inference for h uman-robot interaction (HRI). Based on Gibbs sampling, our weakly supervised grammar learning can automatically construct a hierarchical representation of an interaction with long-term joint sub-tasks of both agents and short term atomic actions of individual agents. Based on a new RGB-D video dataset with rich instances of human interactions, our experiments of Baxter simulation, human evaluation, and real Baxter test demonstrate that the model learned from limited training data successfully generates human-like behaviors in unseen scenarios and outperforms both baselines.
Temporal grounding of natural language in untrimmed videos is a fundamental yet challenging multimedia task facilitating cross-media visual content retrieval. We focus on the weakly supervised setting of this task that merely accesses to coarse video -level language description annotation without temporal boundary, which is more consistent with reality as such weak labels are more readily available in practice. In this paper, we propose a emph{Boundary Adaptive Refinement} (BAR) framework that resorts to reinforcement learning (RL) to guide the process of progressively refining the temporal boundary. To the best of our knowledge, we offer the first attempt to extend RL to temporal localization task with weak supervision. As it is non-trivial to obtain a straightforward reward function in the absence of pairwise granular boundary-query annotations, a cross-modal alignment evaluator is crafted to measure the alignment degree of segment-query pair to provide tailor-designed rewards. This refinement scheme completely abandons traditional sliding window based solution pattern and contributes to acquiring more efficient, boundary-flexible and content-aware grounding results. Extensive experiments on two public benchmarks Charades-STA and ActivityNet demonstrate that BAR outperforms the state-of-the-art weakly-supervised method and even beats some competitive fully-supervised ones.
422 - Yapeng Tian , Di Hu , Chenliang Xu 2021
There are rich synchronized audio and visual events in our daily life. Inside the events, audio scenes are associated with the corresponding visual objects; meanwhile, sounding objects can indicate and help to separate their individual sounds in the audio track. Based on this observation, in this paper, we propose a cyclic co-learning (CCoL) paradigm that can jointly learn sounding object visual grounding and audio-visual sound separation in a unified framework. Concretely, we can leverage grounded object-sound relations to improve the results of sound separation. Meanwhile, benefiting from discriminative information from separated sounds, we improve training example sampling for sounding object grounding, which builds a co-learning cycle for the two tasks and makes them mutually beneficial. Extensive experiments show that the proposed framework outperforms the compared recent approaches on both tasks, and they can benefit from each other with our cyclic co-learning.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا