ﻻ يوجد ملخص باللغة العربية
Large area triple GEM chambers will be employed in the first two stations of the MuCh system of the CBM experiment at the upcoming Facility for Antiproton and Ion Research FAIR in Darmstadt/Germany. The GEM detectors have been designed to take data at an unprecedented interaction rate (up to 10 MHz) in nucleus-nucleus collisions in CBM at FAIR. Real-size trapezoidal modules have been installed in the mCBM experiment and tested in nucleus-nucleus collisions at the SIS18 beamline of GSI as a part of the FAIR Phase-0 program. In this report, we discuss the design, installation, commissioning, and response of these GEM modules in detail. The response has been studied using the free-streaming readout electronics designed for the CBM-MuCh and CBM-STS detector system. In free-streaming data, the first attempt on an event building based on the timestamps of hits has been carried out, resulting in the observation of clear spatial correlations between the GEM modules in the mCBM setup for the first time. Accordingly, a time resolution of $sim$15,ns have been obtained for the GEM detectors.
The stability of triple GEM detector setups in an environment of high energetic showers is studied. To this end the spark probability in a shower environment is compared to the spark probability in a pion beam.
Characteristics of triple GEM detector have been studied systematically. The variation of the effective gain and energy resolution of GEM with variation of the applied voltage has been measured with Fe55 X-ray source for different gas mixtures and wi
In CBM Experiment at FAIR, dimuons will be detected by a Muon Chamber (MUCH) consisting of segmented absorbers of varying widths and tracking chambers sandwiched between the absorber-pairs. In this fixed target heavy-ion collision experiment, operati
At present, part of the forward RPC muon system of the CMS detector at the CERN LHC remains uninstrumented in the high-eta region. An international collaboration is investigating the possibility of covering the 1.6 < |eta| < 2.4 region of the muon en
Multi-gap Resistive Plate Chambers (MRPCs) with multi-strip readout are considered to be the optimal detector candidate for the Time-of-Flight (ToF) wall in the Compressed Baryonic Matter (CBM) experiment. In the R&D phase MRPCs with different granul