ﻻ يوجد ملخص باللغة العربية
We are interested in the recursive model $(Y_n, , nge 0)$ studied by Collet, Eckmann, Glaser and Martin [9] and by Derrida and Retaux [12]. We prove that at criticality, the probability ${bf P}(Y_n>0)$ behaves like $n^{-2 + o(1)}$ as $n$ goes to infinity; this gives a weaker confirmation of predictions made in [9], [12] and [6]. Our method relies on studying the number of pivotal vertices and open paths, combined with a delicate coupling argument.
We introduce particle systems in one or more dimensions in which particles perform branching Brownian motion and the population size is kept constant equal to $N > 1$, through the following selection mechanism: at all times only the $N$ fittest parti
The partner model is an SIS epidemic in a population with random formation and dissolution of partnerships, and with disease transmission only occuring within partnerships. Foxall, Edwards, and van den Driessche found the critical value and studied t
We consider a class of branching-selection particle systems on $R$ similar to the one considered by E. Brunet and B. Derrida in their 1997 paper Shift in the velocity of a front due to a cutoff. Based on numerical simulations and heuristic arguments,
We consider branching Brownian motion on the real line with absorption at zero, in which particles move according to independent Brownian motions with the critical drift of $-sqrt{2}$. Kesten (1978) showed that almost surely this process eventually d
The frog model on the rooted d-ary tree changes from transient to recurrent as the number of frogs per site is increased. We prove that the location of this transition is on the same order as the degree of the tree.