ترغب بنشر مسار تعليمي؟ اضغط هنا

Connecting Primordial Black Hole to boosted sub-GeV Dark Matter through neutrino

117   0   0.0 ( 0 )
 نشر من قبل Tong Li
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The explorations of alternative dark matter (DM) candidates beyond WIMP motivated primordial black holes (PBHs) or sub-GeV DM particle in the Milky Way. Neutrinos from PBH evaporation at the present times play as a novel medium boosting sub-GeV DM and leaving signatures in the terrestrial experiments. We explore the boosted DM by the neutrino flux from PBH evaporation (PBH$ u$BDM) so as to connect the macroscopic PBHs to sub-GeV DM particle. We consider this PBH$ u$BDM scenario to interpret the XENON1T keV excess. The projected bounds on the sub-GeV DM-electron scattering cross section and the fraction of DM composed of PBHs $f_{rm PBH}$ are imposed for future experiments.



قيم البحث

اقرأ أيضاً

Primordial black holes (PBHs) hypothetically generated in the first instants of life of the Universe are potential dark matter (DM) candidates. Focusing on PBHs masses in the range $[5 times10^{14} - 5 times 10^{15}]$g, we point out that the neutrino s emitted by PBHs evaporation can interact through the coherent elastic neutrino nucleus scattering (CE$ u$NS) producing an observable signal in multi-ton DM direct detection experiments. We show that with the high exposures envisaged for the next-generation facilities, it will be possible to set bounds on the fraction of DM composed by PBHs improving the existing neutrino limits obtained with Super-Kamiokande. We also quantify to what extent a signal originating from a small fraction of DM in the form of PBHs would modify the so-called neutrino floor, the well-known barrier towards detection of weakly interacting massive particles (WIMPs) as the dominant DM component.
73 - Debasish Borah 2020
Motivated by the recently reported excess of electron recoil events by the XENON1T experiment, we propose low scale seesaw scenarios for light neutrino masses within $U(1)_X$ gauge extension of the standard model that also predicts stable as well as long lived dark sector particles. The new fields necessary for seesaw realisation as well as dark matter are charged under the $U(1)_X$ gauge symmetry in an anomaly free way. A singlet scalar field which effectively gives rise to lepton number violation and hence Majorana light neutrino masses either at tree or radiative level, also splits the dark matter field into two quasi-degenerate states. While sub-eV neutrino mass and non-zero dark matter mass splitting are related in this way, the phenomenology of sub-GeV scale inelastic dark matter can be very rich if the mass splitting is of keV scale. We show that for suitable parameter space, both the components with keV splitting can contribute to total dark matter density of the present universe, while opening up the possibility of the heavier dark matter candidate to undergo down-scattering with electrons. We check the parameter space of the model for both fermion and scalar inelastic dark matter candidates which can give rise to the XENON1T excess while being consistent with other phenomenological bounds. We also discuss the general scenario where mass splitting~$Delta m$ between the two dark matter components can be larger, effectively giving rise to a single component dark matter scenario.
We analyze the sensitivity of fixed-target experiments to sub-GeV thermal relic dark matter models, accounting for variations in both mediator and dark matter mass, and including dark matter production through both on- and off-shell mediators. It is commonly thought that the sensitivity of such experiments is predicated on the existence of an on-shell mediator that is produced and then decays to dark matter. While accelerators do provide a unique opportunity to probe the mediator directly, our analysis demonstrates that their sensitivity extends beyond this commonly discussed regime. In particular, we provide sensitivity calculations that extend into both the effective field theory regime where the mediator is much heavier than the dark matter and the regime of an off-shell mediator lighter than a dark matter particle-antiparticle pair. Our calculations also elucidate the resonance regime, making it clear that all but a fine-tuned region of thermal freeze-out parameter space for a range of simple models is well covered.
A novel mechanism of boosting dark matter by cosmic neutrinos is proposed. The new mechanism is so significant that the arriving flux of dark matter in the mass window $1~{rm keV} lesssim m_{rm DM} lesssim 1~{rm MeV}$ on Earth can be enhanced by two to four orders of magnitude compared to one only by cosmic electrons. Thereby we firstly derive conservative but still stringent bounds and future sensitivity limits for such cosmic-neutrino-boosted dark matter ($ u$BDM) from advanced underground experiments such as Borexino, PandaX, XENON1T, and JUNO.
We propose the first experimental test of the inelastic boosted dark matter hypothesis, capitalizing on the new physics potential with the imminent data taking of the ProtoDUNE detectors. More specifically, we explore various experimental signatures at the cosmic frontier, arising in boosted dark matter scenarios, i.e., relativistic, inelastic scattering of boosted dark matter often created by the annihilation of its heavier component which usually comprises of the dominant relic abundance. Although features are unique enough to isolate signal events from potential backgrounds, vetoing a vast amount of cosmic background is rather challenging as the detectors are located on the ground. We argue, with a careful estimate, that such backgrounds nevertheless can be well under control by performing dedicated analyses after data acquisition. We then discuss some phenomenological studies which can be achieved with ProtoDUNE, employing a dark photon scenario as our benchmark dark-sector model.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا