ﻻ يوجد ملخص باللغة العربية
Database Forensics (DBF) domain is a branch of digital forensics, concerned with the identification, collection, reconstruction, analysis, and documentation of database crimes. Different researchers have introduced several identification models to handle database crimes. Majority of proposed models are not specific and are redundant, which makes these models a problem because of the multidimensional nature and high diversity of database systems. Accordingly, using the metamodeling approach, the current study is aimed at proposing a unified identification model applicable to the database forensic field. The model integrates and harmonizes all exiting identification processes into a single abstract model, called Common Identification Process Model (CIPM). The model comprises six phases: 1) notifying an incident, 2) responding to the incident, 3) identification of the incident source, 4) verification of the incident, 5) isolation of the database server and 6) provision of an investigation environment. CIMP was found capable of helping the practitioners and newcomers to the forensics domain to control database crimes.
Byzantine fault-tolerant (BFT) protocols allow a group of replicas to come to a consensus even when some of the replicas are Byzantine faulty. There exist multiple BFT protocols to securely tolerate an optimal number of faults $t$ under different net
We present two subtle charge transport problems revealed by the statistics of flat fields. Mark Downing has presented photon transfer curves showing variance dips of order 25% at signal levels around 80% of blooming. These dips appear when substrate
AI-synthesized face-swapping videos, commonly known as DeepFakes, is an emerging problem threatening the trustworthiness of online information. The need to develop and evaluate DeepFake detection algorithms calls for large-scale datasets. However, cu
Metamodeling is used as a general technique for integrating and defining models from different domains. This technique can be used in diverse application domains, especially for purposes of standardization. Also, this process mainly has a focus on th
IoT devices have been adopted widely in the last decade which enabled collection of various data from different environments. The collected data is crucial in certain applications where IoT devices generate data for critical infrastructure or systems