ﻻ يوجد ملخص باللغة العربية
Resonant modes in a lossy periodic structure sandwiched between two lossless homogeneous media form bands that depend on the Bloch wavevector continuously and have a complex frequency due to radiation and absorption losses. A complex bound state in the continuum (cBIC) is a special state with a zero radiation loss in such a band. Plane waves incident upon the periodic structure induce local fields that are resonantly enhanced. In this paper, we derive a rigorous formula for field enhancement, and analyze its dependence on the frequency, wavevector and amplitude of the incident wave. For resonances with multiple radiation channels, we determine the incident wave that maximizes the field enhancement, and find conditions under which the field enhancement can be related to the radiation and dissipation quality factors. We also show that with respect to the Bloch wavevector, the largest field enhancement is obtained approximately when the radiation and dissipation quality factors are equal. Our study clarifies the various factors related to field enhancement, and provides a useful guideline for applications where a strong local field is important.
We study, both theoretically and experimentally, tunable metasurfaces supporting sharp Fano-resonances inspired by optical bound states in the continuum. We explore the use of arsenic trisulfide (a photosensitive chalcogenide glass) having optical pr
A periodic structure sandwiched between two homogeneous media can support bound states in the continuum (BICs) that are valuable for many applications. It is known that generic BICs in periodic structures with an up-down mirror symmetry and an in-pla
On dielectric periodic structures with a reflection symmetry in a periodic direction, there can be antisymmetric standing waves (ASWs) that are symmetry-protected bound states in the continuum (BICs). The BICs have found many applications, mainly bec
For a periodic structure sandwiched between two homogeneous media, a bound state in the continuum (BIC) is a guided Bloch mode with a frequency in the radiation continuum. Optical BICs have found many applications, mainly because they give rise to re
We propose a new paradigm for realizing bound states in the continuum (BICs) by engineering the environment of a system to control the number of available radiation channels. Using this method, we demonstrate that a photonic crystal slab embedded in