ترغب بنشر مسار تعليمي؟ اضغط هنا

SDSS-IV MaNGA: Stellar M/L gradients and the M/L-colour relation in galaxies

257   0   0.0 ( 0 )
 نشر من قبل Junqiang Ge
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The stellar mass-to-light ratio gradient in SDSS $r-$band $ abla (M_*/L_r)$ of a galaxy depends on its mass assembly history, which is imprinted in its morphology and gradients of age, metallicity, and stellar initial mass function (IMF). Taking a MaNGA sample of 2051 galaxies with stellar masses ranging from $10^9$ to $10^{12}M_odot$ released in SDSS DR15, we focus on face-on galaxies, without merger and bar signatures, and investigate the dependence of the 2D $ abla (M_*/L_r)$ on other galaxy properties, including $M_*/L_r$-colour relationships by assuming a fixed Salpeter IMF as the mass normalization reference. The median gradient is $ abla M_*/L_rsim -0.1$ (i.e., the $M_*/L_r$ is larger at the centre) for massive galaxies, becomes flat around $M_*sim 10^{10} M_{odot}$ and change sign to $ abla M_*/L_rsim 0.1$ at the lowest masses. The $M_*/L_r$ inside a half light radius increases with increasing galaxy stellar mass; in each mass bin, early-type galaxies have the highest value, while pure-disk late-type galaxies have the smallest. Correlation analyses suggest that the mass-weighted stellar age is the dominant parameter influencing the $M_*/L_r$ profile, since a luminosity-weighted age is easily affected by star formation when the specific star formation rate (sSFR) inside the half light radius is higher than $10^{-3} {rm Gyr}^{-1}$. With increased sSFR gradient, one can obtain a steeper negative $ abla (M_*/L_r)$. The scatter in the slopes of $M_*/L$-colour relations increases with increasing sSFR, for example, the slope for post-starburst galaxies can be flattened to $0.45$ from the global value $0.87$ in the $M_*/L$ vs. $g-r$ diagram. Hence converting galaxy colours to $M_*/L$ should be done carefully, especially for those galaxies with young luminosity-weighted stellar ages, which can have quite different star formation histories.

قيم البحث

اقرأ أيضاً

Bars in galaxies are thought to stimulate both inflow of material and radial mixing along them. Observational evidence for this mixing has been inconclusive so far however, limiting the evaluation of the impact of bars on galaxy evolution. We now use results from the MaNGA integral field spectroscopic survey to characterise radial stellar age and metallicity gradients along the bar and outside the bar in 128 strongly barred galaxies. We find that age and metallicity gradients are flatter in the barred regions of almost all barred galaxies when compared to corresponding disk regions at the same radii. Our results re-emphasize the key fact that by azimuthally averaging integral field spectroscopic data one loses important information from non-axisymmetric galaxy components such as bars and spiral arms. We interpret our results as observational evidence that bars are radially mixing material in galaxies of all stellar masses, and for all bar morphologies and evolutionary stages.
We present a study on the stellar age and metallicity distributions for 1105 galaxies using the STARLIGHT software on MaNGA integral field spectra. We derive age and metallicity gradients by fitting straight lines to the radial profiles, and explore their correlations with total stellar mass M*, NUV-r colour and environments, as identified by both the large scale structure (LSS) type and the local density. We find that the mean age and metallicity gradients are close to zero but slightly negative, which is consistent with the inside-out formation scenario. Within our sample, we find that both the age and metallicity gradients show weak or no correlation with either the LSS type or local density environment. In addition, we also study the environmental dependence of age and metallicity values at the effective radii. The age and metallicity values are highly correlated with M* and NUV-r and are also dependent on LSS type as well as local density. Low-mass galaxies tend to be younger and have lower metallicity in low-density environments while high-mass galaxies are less affected by environment.
We study the gas phase metallicity (O/H) and nitrogen abundance gradients traced by star forming regions in a representative sample of 550 nearby galaxies in the stellar mass range $rm 10^9-10^{11.5} M_odot$ with resolved spectroscopic data from the SDSS-IV MaNGA survey. Using strong-line ratio diagnostics (R23 and O3N2 for metallicity and N2O2 for N/O) and referencing to the effective (half-light) radius ($rm R_e$), we find that the metallicity gradient steepens with stellar mass, lying roughly flat among galaxies with $rm log(M_star/M_odot) = 9.0$ but exhibiting slopes as steep as -0.14 dex $rm R_e^{-1}$ at $rm log(M_star/M_odot) = 10.5$ (using R23, but equivalent results are obtained using O3N2). At higher masses, these slopes remain typical in the outer regions of our sample ($rm R > 1.5 ~R_e$), but a flattening is observed in the central regions ($rm R < 1~ R_e$). In the outer regions ($rm R > 2.0 ~R_e$) we detect a mild flattening of the metallicity gradient in stacked profiles, although with low significance. The N/O ratio gradient provides complementary constraints on the average chemical enrichment history. Unlike the oxygen abundance, the average N/O profiles do not flatten out in the central regions of massive galaxies. The metallicity and N/O profiles both depart significantly from an exponential form, suggesting a disconnect between chemical enrichment and stellar mass surface density on local scales. In the context of inside-out growth of discs, our findings suggest that central regions of massive galaxies today have evolved to an equilibrium metallicity, while the nitrogen abundance continues to increase as a consequence of delayed secondary nucleosynthetic production.
We estimate ages, metallicities, $alpha$-element abundance ratios and stellar initial mass functions of elliptical (E) and S0 galaxies from the MaNGA-DR15 survey. We stack spectra and use a variety of single stellar population synthesis models to int erpret the absorption line strengths in these spectra. We quantify how these properties vary across the population, as well as with galactocentric distance. This paper is the first of a series and is based on a sample of pure elliptical galaxies at z $le$ 0.08. We show that the properties of the inner regions of Es with the largest luminosity (L$_r$) and central velocity dispersion ($sigma_0$) are consistent with those associated with the commonly used Salpeter IMF, whereas a Kroupa-like IMF is a better description at $sim$ 0.8R/Re (assuming [Ti/Fe] variations are limited). For these galaxies the stellar mass-to-light ratio decreases at most by a factor of 2 from the central regions to Re. In contrast, for lower L$_r$ and $sigma_0$ galaxies, the IMF is shallower and M$_{*}$/L$_r$ in the central regions is similar to the outskirts. Although a factor of 2 is smaller than previous reports based on a handful of galaxies, it is still large enough to matter for dynamical mass estimates. Accounting self-consistently for these gradients when estimating both M$_{*}$ and M$_{dyn}$ brings the two into good agreement: gradients reduce M$_{dyn}$ by $sim$ 0.2 dex while only slightly increasing the M$_{*}$ inferred using a Kroupa IMF. This is a different resolution of the M$_{*}$-M$_{dyn}$ discrepancy than has been followed in the recent literature where M$_{*}$ of massive galaxies is increased by adopting a Salpeter IMF while leaving Mdyn unchanged. A companion paper discusses how stellar population differences are even more pronounced if one separates slow from fast rotators.
We derive ages, metallicities, and individual element abundances of early- and late-type galaxies (ETGs and LTGs) out to 1.5 R$_e$. We study a large sample of 1900 galaxies spanning $8.6 - 11.3 log M/M_{odot}$ in stellar mass, through key absorption features in stacked spectra from the SDSS-IV/MaNGA survey. We use mock galaxy spectra with extended star formation histories to validate our method for LTGs and use corrections to convert the derived ages into luminosity- and mass-weighted quantities. We find flat age and negative metallicity gradients for ETGs and negative age and negative metallicity gradients for LTGs. Age gradients in LTGs steepen with increasing galaxy mass, from $-0.05pm0.11~log$ Gyr/R$_e$ for the lowest mass galaxies to $-0.82pm0.08~log$ Gyr/R$_e$ for the highest mass ones. This strong gradient-mass relation has a slope of $-0.70pm0.18$. Comparing local age and metallicity gradients with the velocity dispersion $sigma$ within galaxies against the global relation with $sigma$ shows that internal processes regulate metallicity in ETGs but not age, and vice versa for LTGs. We further find that metallicity gradients with respect to local $sigma$ show a much stronger dependence on galaxy mass than radial metallicity gradients. Both galaxy types display flat [C/Fe] and [Mg/Fe], and negative [Na/Fe] gradients, whereas only LTGs display gradients in [Ca/Fe] and [Ti/Fe]. ETGs have increasingly steep [Na/Fe] gradients with local $sigma$ reaching $6.50pm0.78$ dex/$log$ km/s for the highest masses. [Na/Fe] ratios are correlated with metallicity for both galaxy types across the entire mass range in our sample, providing support for metallicity dependent supernova yields.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا