ترغب بنشر مسار تعليمي؟ اضغط هنا

The Effects of Stellar Population and Gas Covering Fraction on the Emergent Lyman Alpha Emission of High-Redshift Galaxies

75   0   0.0 ( 0 )
 نشر من قبل Naveen Reddy
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We perform joint modeling of the composite rest-frame far-UV (FUV) and optical spectra of redshift 1.85<z<3.49 star-forming galaxies to deduce key properties of the massive stars, ionized ISM, and neutral ISM, with the aim of investigating the principal factors affecting the production and escape of Ly-alpha (Lya) photons. Our sample consists of 136 galaxies with deep Keck/LRIS and MOSFIRE spectra covering, respectively, Ly-beta through CIII] 1907, 1909; and [OII], [NeIII], H-beta, [OIII], H-alpha, [NII], and [SII]. Spectral and photoionization modeling indicate that the galaxies are uniformly consistent with stellar population synthesis models that include the effects of stellar binarity. Over the dynamic range of our sample, there is little variation in stellar and nebular abundance with Lya equivalent width, W(Lya), and only a marginal anti-correlation between age and W(Lya). The inferred range of ionizing spectral shapes is insufficient to solely account for the variation in W(Lya). Rather, the covering fraction of optically-thick HI appears to be the principal factor modulating the escape of Lya, with most of the Lya photons in down-the-barrel observations of galaxies escaping through low-column-density or ionized channels in the ISM. Our analysis shows that a high star-formation-rate surface density, Sigma_SFR, particularly when coupled with a low galaxy potential (i.e., low stellar mass), can aid in reducing the covering fraction and ease the escape of Lya photons. We conclude with a discussion of the implications of our results for the escape of ionizing radiation at high redshift.

قيم البحث

اقرأ أيضاً

Population III galaxies, made partly or exclusively of metal-free stars, are predicted to exist at high redshifts and may produce very strong Lya emission. A substantial fraction of these Lya photons are likely absorbed in the intergalactic medium at z>6, but recent simulations suggest that significant Lya emission may be detectable up to z~8.5, i.e. well into the reionization epoch. Here, we argue that high-redshift population III galaxies with strong Lya emission can be identified in Hubble Space Telescope imaging data because of their unusual colours. We quantify this effect in some of the filters used in Y-band dropout searches for galaxies at z~8 and find that population III galaxies with high Lya fluxes may exhibit much bluer J-H colours at z=8-10 than any normal type of galaxy at these redshifts. This colour signature can arise even if pop III stars account for as little as ~1e-3 to ~1e-2 of the stellar mass in these galaxies. Some of the anomalously blue objects reported in current Y-band dropout samples do in fact meet the colour criteria for Lya-emitting population III galaxies.
118 - N. Kanekar 2009
We have used the Very Long Baseline Array to image 18 quasars with foreground damped Lyman-$alpha$ systems (DLAs) at 327, 610 or 1420 MHz, to measure the covering factor $f$ of each DLA at or near its redshifted HI 21cm line frequency. Including six systems from the literature, we find that none of 24 DLAs at $0.09 < z < 3.45$ has an exceptionally low covering factor, with $f sim 0.45 - 1$ for the 14 DLAs at $z > 1.5$, $f sim 0.41 - 1$ for the 10 systems at $z < 1$, and consistent covering factor distributions in the two sub-samples. The observed paucity of detections of HI 21cm absorption in high-$z$ DLAs thus cannot be explained by low covering factors and is instead likely to arise due to a larger fraction of warm HI in these absorbers.
85 - Nissim Kanekar 2017
We report Hubble Space Telescope Cosmic Origins Spectrograph far-ultraviolet and Arecibo Telescope H{sc i} 21cm spectroscopic studies of six damped and sub-damped Lyman-$alpha$ absorbers (DLAs and sub-DLAs, respectively) at $z lesssim 0.1$, that have yielded estimates of their H{sc i} column density, metallicity and atomic gas mass. This significantly increases the number of DLAs with gas mass estimates, allowing the first comparison between the gas masses of DLAs and local galaxies. Including three absorbers from the literature, we obtain H{sc i} masses $approx (0.24 - 5.2) times 10^9 : {rm M}_odot$, lower than the knee of the local H{sc i} mass function. This implies that massive galaxies do not dominate the absorption cross-section for low-$z$ DLAs. We use Sloan Digital Sky Survey photometry and spectroscopy to identify the likely hosts of four absorbers, obtaining low stellar masses, $approx 10^7-10^{8.7} M_odot$, in all cases, consistent with the hosts being dwarf galaxies. We obtain high H{sc i} 21,cm or CO emission line widths, $Delta V_{20} approx 100-290$~km~s$^{-1}$, and high gas fractions, $f_{rm HI} approx 5-100$, suggesting that the absorber hosts are gas-rich galaxies with low star formation efficiencies. However, the H{sc i} 21,cm velocity spreads ($gtrsim 100$~km~s$^{-1}$) appear systematically larger than the velocity spreads in typical dwarf galaxies.
Lyman-alpha (Ly{alpha}) photons from ionizing sources and cooling radiation undergo a complex resonant scattering process that generates unique spectral signatures in high-redshift galaxies. We present a detailed Ly{alpha} radiative transfer study of a cosmological zoom-in simulation from the Feedback In Realistic Environments (FIRE) project. We focus on the time, spatial, and angular properties of the Ly{alpha} emission over a redshift range of z = 5-7, after escaping the galaxy and being transmitted through the intergalactic medium (IGM). Over this epoch, our target galaxy has an average stellar mass of $M_{rm star} approx 5 times 10^8 {rm M}_odot$. We find that many of the interesting features of the Ly{alpha} line can be understood in terms of the galaxys star formation history. The time variability, spatial morphology, and anisotropy of Ly{alpha} properties are consistent with current observations. For example, the rest frame equivalent width has a ${rm EW}_{{rm Ly}alpha,0} > 20 {rm AA}$ duty cycle of 62% with a non-negligible number of sightlines with $> 100 {rm AA}$, associated with outflowing regions of a starburst with greater coincident UV continuum absorption, as these conditions generate redder, narrower (or single peaked) line profiles. The lowest equivalent widths correspond to cosmological filaments, which have little impact on UV continuum photons but efficiently trap Ly{alpha} and produce bluer, broader lines with less transmission through the IGM. We also show that in dense self-shielding, low-metallicity filaments and satellites Ly{alpha} radiation pressure can be dynamically important. Finally, despite a significant reduction in surface brightness with increasing redshift, Ly{alpha} detections and spectroscopy of high-$z$ galaxies with the upcoming James Webb Space Telescope is feasible.
We use a large sample of galaxies at z~3 to establish a relationship between reddening, neutral gas covering fraction (fcov(HI)), and the escape of ionizing photons at high redshift. Our sample includes 933 galaxies at z~3, 121 of which have very dee p spectroscopic observations (>7 hrs) in the rest-UV (lambda=850-1300 A) with Keck/LRIS. Based on the high covering fraction of outflowing optically-thick HI indicated by the composite spectra of these galaxies, we conclude that photoelectric absorption, rather than dust attenuation, dominates the depletion of ionizing photons. By modeling the composite spectra as the combination of an unattenuated stellar spectrum including nebular continuum emission with one that is absorbed by HI and reddened by a line-of-sight extinction, we derive an empirical relationship between E(B-V) and fcov(HI). Galaxies with redder UV continua have larger covering fractions of HI characterized by higher line-of-sight extinctions. Our results are consistent with the escape of Lya through gas-free lines-of-sight. Covering fractions based on low-ionization interstellar absorption lines systematically underpredict those deduced from the HI lines, suggesting that much of the outflowing gas may be metal-poor. We develop a model which connects the ionizing escape fraction with E(B-V), and which may be used to estimate the escape fraction for an ensemble of high-redshift galaxies. Alternatively, direct measurements of the escape fraction for our data allow us to constrain the intrinsic 900-to-1500 A flux density ratio to be >0.20, a value that favors stellar population models that include weaker stellar winds, a flatter initial mass function, and/or binary evolution. Lastly, we demonstrate how the framework discussed here may be used to assess the pathways by which ionizing radiation escapes from high-redshift galaxies. [Abridged]
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا