ترغب بنشر مسار تعليمي؟ اضغط هنا

Evolution of Curvature in Riemannian Geometry

143   0   0.0 ( 0 )
 نشر من قبل Abhishek Das
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Abhishek Das




اسأل ChatGPT حول البحث

In this paper shall we endeavour to substantiate that the evolution of the Riemann- Christoffel tensor or curvature tensor can be expressed entirely by an arbitrary timelike vector field and that the curvature tensor returns to its initial value with respect to change in a particular index. This implies that Poincares recurrence theorem is valid in this cosmological scenario. Also, it has been shown that geodesics can diverge just as they can converge. As is ostensible, this result indicates the existence the of a point of exclusivity - the opposite of a singularity.



قيم البحث

اقرأ أيضاً

The recently introduced Lipschitz-Killing curvature measures on pseudo-Riemannian manifolds satisfy a Weyl principle, i.e. are invariant under isometric embeddings. We show that they are uniquely characterized by this property. We apply this characte rization to prove a Kunneth-type formula for Lipschitz-Killing curvature measures, and to classify the invariant generalized valuations and curvature measures on all isotropic pseudo-Riemannian space forms.
147 - L. Velazquez 2013
Fluctuation geometry was recently proposed as a counterpart approach of Riemannian geometry of inference theory. This theory describes the geometric features of the statistical manifold $mathcal{M}$ of random events that are described by a family of continuous distributions $dp(x|theta)$. A main goal of this work is to clarify the statistical relevance of Levi-Civita curvature tensor $R_{ijkl}(x|theta)$ of the statistical manifold $mathcal{M}$. For this purpose, the notion of emph{irreducible statistical correlations} is introduced. Specifically, a distribution $dp(x|theta)$ exhibits irreducible statistical correlations if every distribution $dp(check{x}|theta)$ obtained from $dp(x|theta)$ by considering a coordinate change $check{x}=phi(x)$ cannot be factorized into independent distributions as $dp(check{x}|theta)=prod_{i}dp^{(i)}(check{x}^{i}|theta)$. It is shown that the curvature tensor $R_{ijkl}(x|theta)$ arises as a direct indicator about the existence of irreducible statistical correlations. Moreover, the curvature scalar $R(x|theta)$ allows to introduce a criterium for the applicability of the emph{gaussian approximation} of a given distribution function. This type of asymptotic result is obtained in the framework of the second-order geometric expansion of the distributions family $dp(x|theta)$, which appears as a counterpart development of the high-order asymptotic theory of statistical estimation. In physics, fluctuation geometry represents the mathematical apparatus of a Riemannian extension for Einsteins fluctuation theory of statistical mechanics. Some exact results of fluctuation geometry are now employed to derive the emph{invariant fluctuation theorems}.
Let $mathcal{K}(n, V)$ be the set of $n$-dimensional compact Kahler-Einstein manifolds $(X, g)$ satisfying $Ric(g)= - g$ with volume bounded above by $V$. We prove that after passing to a subsequence, any sequence ${ (X_j, g_j)}_{j=1}^infty$ in $math cal{K}(n, V)$ converges, in the pointed Gromov-Hausdorff topology, to a finite union of complete Kahler-Einstein metric spaces without loss of volume. The convergence is smooth off a closed singular set of Hausdorff dimension no greater than $2n-4$, and the limiting metric space is biholomorphic to an $n$-dimensional semi-log canonical model with its non log terminal locus of complex dimension no greater than $n-1$ removed. We also show that the Weil-Petersson metric extends uniquely to a Kahler current with bounded local potentials on the KSBA compactification of the moduli space of canonically polarized manifolds. In particular, the coarse KSBA moduli space has finite volume with respect to the Weil-Petersson metric. Our results are a high dimensional generalization of the well known compactness results for hyperbolic metrics on compact Riemann surfaces of fixed genus greater than one.
We show that every paracomplex space form is locally isometric to a modified Riemannian extension and give necessary and sufficient conditions so that a modified Riemannian extension is Einstein. We exhibit Riemannian extension Osserman manifolds of signature (3,3) whose Jacobi operators have non-trivial Jordan normal form and which are not nilpotent. We present new four dimensional results in Osserman geometry.
We prove the integrability and superintegrability of a family of natural Hamiltonians which includes and generalises those studied in some literature, originally defined on the 2D Minkowski space. Some of the new Hamiltonians are a perfect analogy of the well-known superintegrable system on the Euclidean plane proposed by Tremblay-Turbiner-Winternitz and they are defined on Minkowski space, as well as on all other 2D manifolds of constant curvature, Riemannian or pseudo-Riemannian. We show also how the application of the coupling-constant-metamorphosis technique allows us to obtain new superintegrable Hamiltonians from the previous ones. Moreover, for the Minkowski case, we show the quantum superintegrability of the corresponding quantum Hamiltonian operator.Our results are obtained by applying the theory of extended Hamiltonian systems, which is strictly connected with the geometry of warped manifolds.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا